Purpose: Exposure to diazinon can trigger acute and chronic toxicity and significantly induces DNA damage and proapoptotic effects in different human cells. Due to the significance of probiotic bacteria antitoxin effect, this study aimed to investigate the effect of Lactobacillus casei on diazinon (DZN) cytotoxicity in human umbilical vein endothelial cells (HUVEC) in vitro.

Methods: The cytotoxicity assessments were performed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test, DAPI (4',6-diamidino-2-phenylindole) staining and flow cytometric methodologies.

Results: Cytotoxic assessments through flow cytometry/ DAPI staining demonstrated that apoptosis is the main cytotoxic mechanism of diazinon in HUVEC cells and L. casei could decrease the diazinon cytotoxic effects on toxicants.

Conclusion: the screen of total bacterial secreted metabolites can be considered as a wealthy source to find the new active compounds to introduce as reducing agricultural remained pesticide cytotoxicity effects on the human food chain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961978PMC
http://dx.doi.org/10.15171/apb.2016.028DOI Listing

Publication Analysis

Top Keywords

lactobacillus casei
8
cytotoxicity human
8
effects human
8
diazinon
5
casei decreases
4
decreases organophosphorus
4
organophosphorus pesticide
4
pesticide diazinon
4
cytotoxicity
4
diazinon cytotoxicity
4

Similar Publications

Encapsulation technology is a suitable tool to protect probiotics in carrier food products and gastrointestinal tract. In the current investigation, the potential of gum arabic, soy protein isolate and their blend as wall material for the encapsulation of five Lactobacillus spp. viz.

View Article and Find Full Text PDF

Infectious diabetic wounds pose an arduous threat to contemporary healthcare. The combination of refractory biofilms, persistent inflammation, and retarded angiogenesis can procure non-unions and life-threatening complications, calling for advanced therapeutics potent to orchestrate anti-infective effectiveness, benign biocompatibility, pro-reparative immunomodulation, and angiogenic regeneration. Herein, embracing the emergent "living bacterial therapy" paradigm, a designer probiotic-in-hydrogel wound dressing platform is demonstrated.

View Article and Find Full Text PDF

This work aimed to study the production, for the first time, of three fermented products of chestnut puree (CP) with milk kefir grains, a higher nisin-producing (Lactococcus (L.) lactis CECT 539) and a higher lactic acid-producing (Lactobacillus (Lb.) casei CECT 4043) lactic acid bacteria (LAB).

View Article and Find Full Text PDF

Maltotriosyl-erythritol, a transglycosylation product of erythritol by Thermus sp. amylomaltase and its application to prebiotic.

Food Chem

January 2025

Department of Biochemistry, Phramongkutklao College of Medicine, Phramongkutklao Hospital, Bangkok 10400, Thailand. Electronic address:

In this study, maltotriosyl-erythritol (EG) was synthesized as a novel prebiotic candidate via transglycosylation using recombinant amylomaltase (AMase) from Thermus sp. Tapioca starch served as the glucosyl donor, and erythritol as the acceptor. High-performance liquid chromatography (HPLC) revealed an EG yield of 14.

View Article and Find Full Text PDF

Heat-inactivated Lactobacillus casei strain GKC1 Mitigates osteoporosis development in vivo via enhanced osteogenesis.

Biochem Biophys Res Commun

January 2025

Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Department of Food Sciences, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan.

Osteoporosis, a significant bone disease predominantly affecting elderly and postmenopausal women, leads to increased bone fragility and fracture risk, presenting a major public health concern with substantial socioeconomic implications. This study investigated the therapeutic potential of Lactobacillus strains, known for their immunomodulatory properties, in an ovariectomy-induced osteoporosis mouse model. Among three tested strains Lactobacillus casei GKC1, Lactobacillus rhamnosus GKLC1, and Lactobacillus johnsonii GKJ2, GKC1 demonstrated superior efficacy in promoting osteogenesis-related gene expression, including alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (RUNX2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!