The transfer of spin angular momentum to a nanomagnet from a spin polarized current provides an efficient means of controlling the magnetization direction in nanomagnets. A unique consequence of this spin torque is that the spontaneous oscillations of the magnetization can be induced by applying a combination of a dc bias current and a magnetic field. Here we experimentally demonstrate a different effect, which can drive a nanomagnet into spontaneous oscillations without any need of spin torque. For the demonstration of this effect, we use a nano-pillar of magnetic tunnel junction (MTJ) powered by a dc current and connected to a coplanar waveguide (CPW) lying above the free layer of the MTJ. Any fluctuation of the free layer magnetization is converted into oscillating voltage via the tunneling magneto-resistance effect and is fed back into the MTJ by the CPW through inductive coupling. As a result of this feedback, the magnetization of the free layer can be driven into a continual precession. The combination of MTJ and CPW behaves similar to a laser system and outputs a stable rf power with quality factor exceeding 10,000.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967853PMC
http://dx.doi.org/10.1038/srep30747DOI Listing

Publication Analysis

Top Keywords

free layer
12
spin torque
8
spontaneous oscillations
8
mtj cpw
8
coherent microwave
4
microwave generation
4
generation spintronic
4
spintronic feedback
4
feedback oscillator
4
oscillator transfer
4

Similar Publications

Rare earth elements (REEs) are emerging contaminants rendering potential risks in soils to environmental quality and human health. The causation between their geochemical signatures and contamination levels with parent rocks and soil properties are critical for REEs risk assessments, which are urgently needed globally. Thus, this study aimed to elucidate cause-and-effect among hydrofluoric-acid-digested total and ethylenediaminetetraacetic acid extracted bioavailable soil REEs and their contamination degree evaluated by pollution indices in 268 soil layer (horizon) samples from 50 soil profiles derived from felsic, intermediate, mafic, ultramafic, and sedimentary rocks in Taiwan.

View Article and Find Full Text PDF

White light-emitting electrochemical cells based on metal-free TADF emitters.

Nat Commun

January 2025

The Organic Photonics and Electronics Group, Department of Physics, Umeå University, Umeå, Sweden.

The attainment of white emission from a light-emitting electrochemical cell (LEC) is important, since it enables illumination and facile color conversion from devices that can be cost-efficient and sustainable. However, a drawback with current white LECs is that they either employ non-sustainable metals as an emitter constituent or are intrinsically efficiency limited by that the emitter only converts singlet excitons to photons. Organic compounds that emit by thermally activated delayed fluorescence (TADF) can address these issues since they can harvest all excitons for light emission while being metal free.

View Article and Find Full Text PDF

Hydrogen-bonded organic frameworks (HOFs) are under fast development in broad applications but have not been well explored for chemiresistive gas sensing yet primarily due to insufficient active sites. Herein, a new porphyrin-based HOF-199 is constructed by OH···O hydrogen bonds featuring layered networks and rich free oxygen (O) atoms, which is further exfoliated into few-layer nonosheets with more dangling O sites through an ultrasound-assisted liquid exfoliation method (namely L-HOF-199). Benefiting from rich electron-donor sites, L-HOF-199 demonstrates exceptional NO sensing properties under ambient conditions, achieving a remarkable 3.

View Article and Find Full Text PDF

High-entropy layered double hydroxides tailor Pt electron state for promoting acidic hydrogen evolution reaction.

J Colloid Interface Sci

January 2025

Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China. Electronic address:

Despite the advancement of the Pt-catalyzed hydrogen evolution reaction (HER) through oxophilic metal-hydroxide surface hybridization, its stability in acidic solutions remains unsatisfactory. This is primarily due to excessive aggregation of active hydrogen, which hinders subsequent hydrogen desorption, coupled with the poor operational stability of metal hydroxides. In this study, we have designed Pt nanoparticles-modified NiFeCoCuCr high-entropy layered double hydroxides (Pt/HE-LDH) that exhibit exceptional catalytic activity toward HER in acidic electrolytes.

View Article and Find Full Text PDF

The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, , free lipid molecules, charged surfactant molecules , which in turn lead to a nonzero charge along the liquid-liquid interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!