Purpose: To mathematically model and test ex vivo a modified technique of irreversible electroporation (IRE) to produce large spherical ablations by using a single probe.
Materials And Methods: Computed simulations were performed by using varying voltages, electrode exposure lengths, and tissue types. A vegetable (potato) tissue model was then used to compare ablations created by conventional and high-frequency IRE protocols by using 2 probe configurations: a single probe with two collinear electrodes (2EP) or a single electrode configured with a grounding pad (P+GP). The new P+GP electrode configuration was evaluated in ex vivo liver tissue.
Results: The P+GP configuration produced more spherical ablation volumes than the 2EP configuration in computed simulations and tissue models. In prostate tissue, computed simulations predicted ablation volumes at 3,000 V of 1.6 cm(3) for the P+GP configurations, compared with 0.94 cm(3) for the 2EP configuration; in liver tissue, the predicted ablation volumes were 4.7 times larger than those in the prostate. Vegetable model studies verify that the P+GP configuration produces larger and more spherical ablations than those produced by the 2EP. High-frequency IRE treatment of ex vivo liver with the P+GP configuration created a 2.84 × 2.21-cm ablation zone.
Conclusions: Computer modeling showed that P+GP configuration for IRE procedures yields ablations that are larger than the 2EP configuration, creating substantial ablation zones with a single electrode placement. When tested in tissue models and an ex vivo liver model, the P+GP configuration created ablation zones that appear to be of clinically relevant size and shape.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jvir.2016.05.032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!