Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the energy fluxes that occur at mesoscopic scales, and then discuss recent implementations of the colloidal equivalents to the macroscopic Stirling, Carnot and steam engines. These small-scale motors exhibit unique features in terms of power and efficiency fluctuations that have no equivalent in the macroscopic world. We also consider a second pathway for work extraction from colloidal engines operating between active bacterial reservoirs at different temperatures, which could significantly boost the performance of passive heat engines at the mesoscale. Finally, we provide some guidance on how the work extracted from colloidal heat engines can be used to generate net particle or energy currents, proposing a new generation of experiments with colloidal systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6sm00923a | DOI Listing |
Innovation (Camb)
September 2024
Department of Materials Science and Engineering, Southern University and Science and Technology, Shenzhen 518055, China.
The human skin maintains a comfortable and healthy somatosensory state by sensing different aspects of the thermal environment, including temperature value, heat source, energy level, and duration. However, state-of-the-art thermosensors only measure basic temperature values, not the full range of the thermosensation function of human skin. Here, we propose a heat source recognition () sensor of poly(butyl acrylate)-lithium bis(n-fluoroalkylsulfonyl)imide (PBA-Li:FSI; = 1, 3, 5), which enables response to temperature, pressure, and proximity stimulus signals based on the relaxation behavior of the ionic gel and distinguished between different types of heat sources (i.
View Article and Find Full Text PDFJACS Au
January 2025
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Mechanochemistry and mechanocatalysis are gaining increasing attention as environmentally friendly chemical processes because of their solvent-free nature and scalability. Significant effort has been devoted for studying continuum-scale phenomena in mechanochemistry, such as temperature and pressure gradients, but the atomic-scale mechanisms remain relatively unexplored. In this work, we focus on the mechanochemical reduction of MoO as a case study.
View Article and Find Full Text PDFiScience
January 2025
Colorado State University, Fort Collins, CO 80523, USA.
Household electrification is an important pillar of decarbonization in the US and requires the rapid adoption of electric heat pumps. Household energy models that project adoption rates do not represent these decisions well. To what extent are they limited by fundamental knowledge gaps, or is there scope to incorporate insights from the social science literature? We review the energy modeling and social science literature on heating equipment adoption to synthesize our understanding of adoption decisions, to identify best practices on representing decision-making behavior among energy models, and to suggest model improvements.
View Article and Find Full Text PDFRSC Adv
January 2025
State Key Laboratory for New Textile Materials & Advanced Processing Technology, Wuhan Textile University Wuhan 430200 P. R. China
Thermodynamic therapy (TDT) is a promising alternative to photodynamic therapy (PDT) by absorbing heat through thermosensitive agents (TSAs) to generate oxygen-irrelevant highly toxic free radicals. Therefore, TDT can be a perfect partner for photothermal therapy (PTT) to achieve efficient synergistic treatment of anoxic tumors using a single laser, greatly simplifying the treatment process and overcoming hypoxia limitations. However, the issues of how to improve the stability and delivery efficiency of TSAs still need to be addressed urgently.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China.
Background: Continuous fermentation offers advantages in improving production efficiency and reducing costs, making it highly competitive for industrial ethanol production. A key requirement for Saccharomyces cerevisiae strains used in this process is their tolerance to high ethanol concentrations, which enables them to adapt to continuous fermentation conditions. To explore how yeast cells respond to varying levels of ethanol stress during fermentation, a two-month continuous fermentation was conducted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!