Mitochondrial contact sites as platforms for phospholipid exchange.

Biochim Biophys Acta Mol Cell Biol Lipids

Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.

Published: January 2017

Mitochondria are unique organelles that contain their own - although strongly reduced - genome, and are surrounded by two membranes. While most cellular phospholipid biosynthesis takes place in the ER, mitochondria harbor the whole spectrum of glycerophospholipids common to biological membranes. Mitochondria also contribute to overall phospholipid biosynthesis in cells by producing phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. Considering these features, it is not surprising that mitochondria maintain highly active exchange of phospholipids with other cellular compartments. In this contribution we describe the transport of phospholipids between mitochondria and other organelles, and discuss recent developments in our understanding of the molecular functions of the protein complexes that mediate these processes. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2016.07.010DOI Listing

Publication Analysis

Top Keywords

phospholipid biosynthesis
8
mitochondria
6
mitochondrial contact
4
contact sites
4
sites platforms
4
platforms phospholipid
4
phospholipid exchange
4
exchange mitochondria
4
mitochondria unique
4
unique organelles
4

Similar Publications

Cholesterol mediates the potential adverse influence of graphene quantum dots on placental lipid membrane model.

Sci Rep

December 2024

College of Physical Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.

Nanomaterial-biomembrane interactions constitute a critical biological process in assessing the toxicity of such materials in theoretical studies. However, many investigations simplify these interactions by using membrane models containing only one or a few lipid types, deviating significantly from the complexity of real membrane compositions. In particular, cholesterol, a ubiquitous lipid essential for regulating membrane fluidity and closely linked to various diseases, is often overlooked.

View Article and Find Full Text PDF

This study presents characterisation of diatom's PtLPCAT1 (acyl-CoA: lysophosphatidylcholine acyltransferase) activity in phospholipid remodelling. In this research microsomal fractions of yeast Δale1 mutant overexpressing PtLPCAT1 were used as a source of the tested enzyme. In the assays evaluating remodelling of different phospholipids by PtLPCAT1 not modified microsomal fractions of the tested yeast were used.

View Article and Find Full Text PDF

In recent decades, drug resistant (DR) strains of Mycobacterium tuberculosis (M.tb), the cause of tuberculosis (TB), have emerged that threaten public health. Although M.

View Article and Find Full Text PDF

Previously, we reported that α-synuclein (α-syn) clusters synaptic vesicles (SV) Diao et al., 2013, and neutral phospholipid lysophosphatidylcholine (LPC) can mediate this clustering Lai et al., 2023.

View Article and Find Full Text PDF

Analysis of Immunosuppression and Antioxidant Damage in Diploid and Triploid Crucian Carp () Induced by Saline-Alkaline Environmental Stress: From Metabolomic Insight.

Metabolites

December 2024

Laboratory of Quality & Safety Risk Assessment for Aquatic Products, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Areas, Harbin 150070, China.

The salinization of the water environment worldwide is increasing, which has brought great challenges to the sustainability of fish farming of aquatic animals. Three NaHCO concentration groups (0 mmol/L, 20 mmol/L, and 60 mmol/L) were set up in this study to investigate growth and metabolic differences between diploid and triploid crucian carp under saline-alkaline stresses. This study utilized UPLC-QTOF/MS metabolomics to analyze significant metabolites and metabolic pathways in the serum of diploid and triploid crucian carp, exposing them to different NaHCO concentrations in saline-alkaline habitats, elucidating the mechanism of their metabolic differences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!