Underlying chronic inflammation alters the profile and mechanisms of acute neutrophil recruitment.

J Pathol

William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.

Published: November 2016

Chronically inflamed tissues show altered characteristics that include persistent populations of inflammatory leukocytes and remodelling of the vascular network. As the majority of studies on leukocyte recruitment have been carried out in normal healthy tissues, the impact of underlying chronic inflammation on ongoing leukocyte recruitment is largely unknown. Here, we investigate the profile and mechanisms of acute inflammatory responses in chronically inflamed and angiogenic tissues, and consider the implications for chronic inflammatory disorders. We have developed a novel model of chronic ischaemia of the mouse cremaster muscle that is characterized by a persistent population of monocyte-derived cells (MDCs), and capillary angiogenesis. These tissues also show elevated acute neutrophil recruitment in response to locally administered inflammatory stimuli. We determined that Gr1 MDCs, which are widely considered to have anti-inflammatory and reparative functions, amplified acute inflammatory reactions via the generation of additional proinflammatory signals, changing both the profile and magnitude of the tissue response. Similar vascular and inflammatory responses, including activation of MDCs by transient ischaemia-reperfusion, were observed in mouse hindlimbs subjected to chronic ischaemia. This response demonstrates the relevance of the findings to peripheral arterial disease, in which patients experience transient exercise-induced ischaemia known as claudication.These findings demonstrate that chronically inflamed tissues show an altered profile and altered mechanisms of acute inflammatory responses, and identify tissue-resident MDCs as potential therapeutic targets. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082550PMC
http://dx.doi.org/10.1002/path.4776DOI Listing

Publication Analysis

Top Keywords

mechanisms acute
12
chronically inflamed
12
acute inflammatory
12
inflammatory responses
12
underlying chronic
8
chronic inflammation
8
profile mechanisms
8
acute neutrophil
8
neutrophil recruitment
8
inflamed tissues
8

Similar Publications

A mixed-methods observational study of strategies for success in implementation science: overcoming emergency departments hurdles.

BMC Health Serv Res

January 2025

Emergency Medicine, Vanderbilt University Medical Center and, Veterans Affairs Tennessee Valley Healthcare System, Geriatric Research, Education and Clinical Center (GRECC), Nashville, TN, USA.

Background: Heart failure is a major public health concern, affecting 6.7 million Americans. An estimated 16% of emergency department (ED) patients with acute heart failure (AHF) are discharged home.

View Article and Find Full Text PDF

Synaptotagmin-1 attenuates myocardial programmed necrosis and ischemia/reperfusion injury through the mitochondrial pathway.

Cell Death Dis

January 2025

Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.

Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release.

View Article and Find Full Text PDF

DOGMA-seq and multimodal, single-cell analysis in acute myeloid leukemia.

Int Rev Cell Mol Biol

January 2025

Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States. Electronic address:

Acute myeloid leukemia (AML) is a complex cancer, yet advances in recent years from integrated genomics methods have helped improve diagnosis, treatment, and means of patient stratification. A recent example of a powerful, multimodal method is DOGMA-seq, which can measure chromatin accessibility, gene expression, and cell-surface protein levels from the same individual cell simultaneously. Previous bimodal single-cell techniques, such as CITE-seq (Cellular indexing of transcriptomes and epitopes), have only permitted the transcriptome and cell-surface protein expression measurement.

View Article and Find Full Text PDF

The objective of this work was to explore the Teriflunomide (TFM) -loaded chondroitin sulfate hybridized zein nanoparticles (TZCNPs) for the treatment of triple-negative breast cancer (TNBC). The particle size, PDI and %EE of optimized TZCNPs was found 208.7 ± 7.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a clinically common disease with high mortality, characterized by tissue damage caused by excessive activation of inflammation. TRIM7 is an E3 ligase that plays an important role in regulating viral infection, tumor progression and innate immune response. But its function in ALI is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!