Estrogen deprivation has a profound effect on the female brain. One of the most obvious examples of this condition is hot flushes. Although estrogens relieve these typical climacteric symptoms, many women do not want to take them owing to unwanted side-effects impacting, for example, the uterus, breast and blood. Therefore, there is a need for developing safer estrogen therapies. We show here that treatment with 10β,17β-dihydroxyestra-1,4-dien-3-one (DHED), a novel brain-targeting bioprecursor prodrug of the main human estrogen, 17β-estradiol, alleviates hot flushes in rat models of thermoregulatory dysfunction of the brain. Oral administration of DHED elicits a significant reduction of tail skin temperature (TST) rise representing hot flushes in the morphine-dependent ovariectomized rat model and results in the restoration of estrogen deprivation-induced loss of diurnal rhythm in TST. These beneficial effects occur without detrimental peripheral hormonal exposure; thus, the treatment avoids potentially harmful stimulation of estrogen-sensitive peripheral organs, including the uterus and the anterior pituitary, or the proliferation of MCF-7a breast cancer cell xenografts. Our promising preclinical assessments warrant further considerations of DHED for the development of a brain-selective 17β-estradiol therapy to relieve hot flushes without undesirable peripheral side-effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967894PMC
http://dx.doi.org/10.1038/srep30721DOI Listing

Publication Analysis

Top Keywords

hot flushes
20
17β-estradiol alleviates
8
alleviates hot
8
hot
5
flushes
5
treatment orally
4
orally bioavailable
4
bioavailable prodrug
4
prodrug 17β-estradiol
4
flushes hormonal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!