Aims: Cardiac-specific metallothionein (MT) overexpression extends lifespan, but the mechanism underlying the effect of MT protection against age-associated cardiovascular diseases (CVD) remains elusive. To elucidate this, male wild-type and two lines of MT-transgenic (MT-TG) mice, MM and MT-1 (cardiac-specific overexpressing MT about 10- and 80-fold, respectively) at three representative ages (2-3, 9-10, and 18-20 months), were utilized. A stable human MT2A overexpressing cardiomyocytes (H9c2MT7) was also introduced.

Results: Histomorphology and echocardiographic analysis revealed that age-associated cardiac hypertrophy, remodeling, and dysfunction were ameliorated in MT-TG mice. Also, aging-accompanied NF-κB activation, characterized by increased nuclear p65 translocation, elevated DNA-binding activity, and upregulation of inflammatory cytokines, was largely attenuated by MT overexpression. Treatment of H9c2 cardiomyocytes with tumor necrosis factor-α (TNF-α), which mimicked an inflammatory environment, significantly increased NF-κB activity, and some age-related phenotypes appeared. The NF-κB activation was further proved to be pivotal for both age-associated and TNF-α-induced nitrative damage to cardiac 2-oxoglutarate dehydrogenase (2-OGD) by virtue of NF-κB p65 gene silencing. MT inhibited NF-κB activation and associated nitrative damage to cardiac 2-OGD in both old MT-TG hearts and TNF-α-treated H9c2MT7 cardiomyocytes; these protective effects were abolished in H9c2MT7 cardiomyocytes by MT-specific gene silencing. Innovation and Conclusion: Together, these findings indicate that the protective effects of MT against age-associated CVD can be attributed mainly to its role in NF-κB inhibition and resultant alleviation of nitrative damage to 2-OGD. Antioxid. Redox Signal. 25, 936-952.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5144888PMC
http://dx.doi.org/10.1089/ars.2016.6648DOI Listing

Publication Analysis

Top Keywords

nitrative damage
16
nf-κb activation
12
activation associated
8
associated nitrative
8
damage 2-ogd
8
mt-tg mice
8
damage cardiac
8
gene silencing
8
h9c2mt7 cardiomyocytes
8
protective effects
8

Similar Publications

Diethylnitrosamine (DEN), a common dietary carcinogen, is associated with neurotoxicity in humans and animals. This study investigated the neuroprotective effects of diphenyl diselenide (DPDS) against DEN-induced neurotoxicity in male Albino Wistar rats (n = 40). Rats were randomly distributed into cohorts and treated as follows: vehicle control (corn oil 2 mL/kg; gavage), DPDS-only (5 mg/kg; gavage) and DEN-only (200 mg/kg; single dose i.

View Article and Find Full Text PDF

In this study, heterozygous expression of a common Parkinson-associated GBA1 variant, the L444P mutation, was found to exacerbate α-synuclein aggregation and spreading in a mouse model of Parkinson-like pathology targeting neurons of the medullary vagal system. These neurons were also shown to become more vulnerable to oxidative and nitrative stress after L444P expression. The latter paralleled neuronal formation of reactive oxygen species and led to a pronounced accumulation of nitrated α-synuclein.

View Article and Find Full Text PDF

Understanding the impact of placental oxidative and nitrative stress in pregnancies complicated by fetal growth restriction.

Placenta

December 2024

School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia. Electronic address:

Fetal growth restriction (FGR) impacts approximately 10 % of all pregnancies worldwide and is associated with major adverse effects on fetal health in both the short- and long-term [1]. FGR most commonly arises as a result of impaired placentation, occurring in up to 60 % of cases in developed countries [2]. This narrative review outlines the impact of defective placentation on the placenta, focusing on redox imbalance, how this leads to placental oxidative and nitrative stress, and the implications of these stressors on placental nutrient transfer, premature replicative senescence, and trophoblast cell death.

View Article and Find Full Text PDF

Fabry disease (FD) is an X-linked recessive lysosomal storage disorder, characterized by a deficiency of α-galactosidase, which causes the progressive accumulation of glycosphingolipids, especially globotriaosylsphingosine (Gb3), in lysosomes across multiple organs. Substrate deposition, associated with tissue damage in FD, also contributes to the emergence of a pro-inflammatory state presented by some patients. We investigated pro- and anti-inflammatory cytokines, and the expression of inflammation-associated genes in treated FD patients, as well as oxidative parameters.

View Article and Find Full Text PDF

Protocol for detecting nitrative stress in biological lipid membranes in murine cells and tissues.

STAR Protoc

September 2024

Department of Chemistry and Chemical Biology, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA; Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University-New Brunswick, New Brunswick, NJ 08901, USA. Electronic address:

Article Synopsis
  • Detection of nitrative stress is important for understanding redox signaling and related diseases, particularly in lung conditions.
  • High levels of peroxynitrite from dysregulated nitrative stress can damage cell membranes and trigger inflammation.
  • This study outlines a protocol for using a peroxynitrite-sensing phospholipid to measure nitrative stress in mouse cells and lung tissue, detailing methods for both ex vivo and in vivo experiments in models of acute lung injury.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!