From Molecular Docking to 3D-Quantitative Structure-Activity Relationships (3D-QSAR): Insights into the Binding Mode of 5-Lipoxygenase Inhibitors.

Mol Inform

Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06330 Ankara, Turkey tel.: +90-312-2023236; fax: +90-312-2235018.

Published: February 2012

Pharmacological intervention with 5-Lipoxygenase (5-LO) is a promising strategy for treatment of inflammatory and allergic ailments, including asthma. With the aim of developing predictive models of 5-LO affinity and gaining insights into the molecular basis of ligand-target interaction, we herein describe QSAR studies of 59 diverse nonredox-competitive 5-LO inhibitors based on the use of molecular shape descriptors and docking experiments. These studies have successfully yielded a predictive model able to explain much of the variance in the activity of the training set compounds while predicting satisfactorily the 5-LO inhibitory activity of an external test set of compounds. The inspection of the selected variables in the QSAR equation unveils the importance of specific interactions which are observed from docking experiments. Collectively, these results may be used to design novel potent and selective nonredox 5-LO inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/minf.201100101DOI Listing

Publication Analysis

Top Keywords

5-lo inhibitors
8
docking experiments
8
set compounds
8
5-lo
5
molecular docking
4
docking 3d-quantitative
4
3d-quantitative structure-activity
4
structure-activity relationships
4
relationships 3d-qsar
4
3d-qsar insights
4

Similar Publications

Inflammation is a physiological response of the immune system to infectious agents or tissue injury, which involves a cascade of vascular and cellular events and the activation of biochemical pathways depending on the type of harmful agent and the stimulus generated. The Kunitz peptide HCIQ2c1 of sea anemone is a strong protease inhibitor and exhibits neuroprotective and analgesic activities. In this study, we investigated the anti-inflammatory potential of HCIQ2c1 in histamine- and lipopolysaccharide (LPS)-activated RAW 264.

View Article and Find Full Text PDF

While pharmaceutical Cocrystals have long been acknowledged as a promising method of enhancing a drugs bioavailability, they have not yet experienced widespread industrial adoption on the same scale as other multi-component drugs, such as salts and amorphous solid dispersions. This is partly due to the lack of a being no definitive screening strategy to identify suitable coformers, with the most cocrystal screening strategies heavily relying on trial and error approaches, or through utilizing a multiple and often conflicting, computational screening techniques combined with high material consumption experimental techniques. From the perspective of industry, this can often lead to high material waste and increased costs, encouraging the prioritization of more traditional bioenhancement techniques.

View Article and Find Full Text PDF
Article Synopsis
  • Human 5-lipoxygenase (5-LO) is an important enzyme that helps produce substances called leukotrienes, which are involved in the immune response and can cause inflammation and cancer.
  • Researchers found new chemical compounds that effectively block 5-LO, particularly focusing on a family of inhibitors called tyrphostins.
  • Two specific compounds, degrasyn and AG556, were identified as strong 5-LO blockers that work by attaching to parts of the enzyme, which could lead to new treatments for inflammatory diseases and cancer.
View Article and Find Full Text PDF

Unlabelled: Cryptococcosis, caused by fungi of the genus , manifests in a broad range of clinical presentations, including severe pneumonia and disease of the central nervous system (CNS) and other tissues (bone and skin). Immune deficiency or development of overexuberant inflammatory responses can result in increased susceptibility or host damage, respectively, during fungal encounters. Leukotrienes help regulate inflammatory responses against fungal infections.

View Article and Find Full Text PDF

Objective: To explore the potential mechanism of lysionotin in treating glioma.

Methods: First, target prediction based on Bernoulli Naïve Bayes profiling and pathway enrichment was used to predict the biological activity of lysionotin. The binding between 5-lipoxygenase (5-LO) and lysionotin was detected by surface plasmon resonance (SPR) and molecular docking, and the inhibitory effects of lysionotin on 5-LO and proliferation of glioma were determined using enzyme inhibition assay in vitro and cell viability analysis, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!