The estrogen receptors (ERα and ERβ) which are ligand inducible nuclear receptors are recognized as pharmaceutical targets for diseases such as osteoporosis and breast cancer. There is an increasing interest in the discovery of subtype Selective Estrogen Receptor Modulators (SERMs). A series of novel β-lactam compounds with estrogen receptor modulator properties have been synthesized. The antiproliferative effects of these compounds on human MCF-7 breast tumor cells are reported, together with binding affinity for the ERα and ERβ receptors. The most potent compound 15g demonstrated antiproliferative effects on MCF-7 breast tumor cells (IC=186 nM) and ERα binding (IC=4.3 nM) with 75-fold ERα/β receptor binding selectivity. The effect of positioning of the characteristic amine containing substituted aryl ring (on C-4 or N-1 of the β-lactam scaffold) on the antiproliferative activity and ER-binding properties of the β-lactam compounds is rationalized in a molecular modeling study.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14756366.2016.1210136DOI Listing

Publication Analysis

Top Keywords

estrogen receptor
12
mcf-7 breast
12
selective estrogen
8
receptor modulator
8
effects mcf-7
8
breast cancer
8
erα erβ
8
β-lactam compounds
8
antiproliferative effects
8
breast tumor
8

Similar Publications

Background: Post-menopausal women experience more severe muscular fatty infiltration, though the mechanisms remain unclear. The decline in estrogen levels is considered as a critical physiological alteration during post-menopause. Fibro/adipogenic progenitors (FAPs) are identified as major contributors to muscular fatty infiltration.

View Article and Find Full Text PDF

Argonaute2 modulates megakaryocyte development and sex-specific control of platelet protein expression and reactivity.

Sci Rep

January 2025

Department of Medicine, Division of Hematology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.

Platelets are enriched in miRNAs and harbor Ago2 as the principal RNA silencing Argonaute. However, roles in thrombopoiesis and platelet function remain poorly understood. We generated megakaryocyte/platelet-specific Ago2-deleted (Ago2 KO) mice and assessed proteomic and functional effects.

View Article and Find Full Text PDF

Minimal study focused on the association between mixed pollutants in atmospheric particulate matter (PM) and their reproductive health risks. Utilizing a novel quantitative structure-activity relationship (QSAR) integrated machine learning algorithms, we evaluated the mixed reproductive health risks associated with phthalates (PAEs) and organophosphates (OPEs) exposure by assessing the affinities of these compounds binding to estrogen receptors (ER) and androgen receptors (AR). The mixed toxicity equivalent factor (TEF) and mixed toxicity equivalent quantity (TEQ) by the QSAR model were all smaller than the sum TEF and TEQ of individual PAEs and OPEs, which may be due to the antagonistic effect of PAEs and OPEs monomers on reproductive toxicity.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is a subtype of breast cancer clinically defined as lacking expression of Estrogen receptor (ER), Progesterone receptor (PR), and Human Epidermal growth factor Receptor (HER2). Psychological distress is a major risk factor of TNBC, patients diagnosed with TNBC are under tremendous stress due to the aggressive nature of the disease. Stress hormones decrease the efficacy of therapeutics.

View Article and Find Full Text PDF

Premature Ovarian Insufficiency refers to the premature decline in ovarian function before the age of 40, resulting in menstrual irregularities or complete cessation of menstruation, and affecting fertility. Widely used bisphenol compounds may have potential health effects, including premature ovarian insufficiency (POI). This study employs computational biology and bioinformatics to investigate the effects of bisphenols (BPs) on POI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!