A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Accelerated hydrazone formation in charged microdroplets. | LitMetric

Accelerated hydrazone formation in charged microdroplets.

Rapid Commun Mass Spectrom

Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.

Published: August 2016

Rationale: Electrospray ionization-mass spectrometry (ESI-MS) is an emerging tool for reaction monitoring. It can be accompanied by reaction acceleration in charged droplets.

Methods: The time course of the bulk reaction of indoline-2,3-dione with phenylhydrazine in methanol to produce 3-(2- phenylhydrazono)indolin-2-one was monitored by ESI. Both nanoESI and electrosonic spray ionization (ESSI) were used for this study as representing two common forms of ionization for reaction monitoring. The effect on product yield of the distance the droplets travel between the source and the MS inlet was varied and product/starting material ratios were examined.

Results: Product yield is dramatically increased by increasing the distance. At short distances reaction monitoring can be performed without acceleration and at greater distances reaction acceleration occurs. This distance effect over the course of the reaction roughly parallels the time dependence of the bulk-phase reaction.

Conclusions: Reaction acceleration in droplets is attributed to solvent evaporation leading to increased surface to volume ratios. An acceleration factor of 10(4) , measured relative to the bulk reaction at short times, is readily achieved by simply increasing the droplet distance of flight showing that the same ionization source can be used to monitor reactions with or without acceleration. Copyright © 2016 John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.7664DOI Listing

Publication Analysis

Top Keywords

reaction monitoring
12
reaction acceleration
12
reaction
9
bulk reaction
8
product yield
8
distances reaction
8
acceleration
6
accelerated hydrazone
4
hydrazone formation
4
formation charged
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!