AI Article Synopsis

  • This study investigates how TLR9, activated by bacterial DNA with CpG motifs, enhances phagocytosis and autophagy in macrophages when exposed to Staphylococcus aureus.
  • Researchers found that pretreatment with CpG-ODN significantly increased these immune responses, but the effects were absent in TLR9-deficient macrophages, highlighting the receptor's crucial role.
  • The signaling pathways involved were identified as JNK and P38, indicating that targeting these pathways could be potential strategies for enhancing the immune response against bacterial infections.

Article Abstract

Aims: Phagocytic and autophagic responses are critical for effective host defense against bacterial infection. Bacterial DNA which contains unmethylated Cytosine-phosphate-Guanine (CpG) motifs can trigger a variety of defense mechanisms via Toll-like receptor 9 (TLR9). Here, we aimed to investigate the underlying mechanism of TLR9-mediated phagocytosis and autophagy in Staphylococcus aureus (S.aureus)-stimulated macrophages.

Main Methods: The macrophage cell line RAW264.7 or primary peritoneal macrophage was pretreated with CpG-ODN and then stimulated by S. aureus, where some of them were pretreated with SP600125 or SB203580 simultaneously. The protein expressions of TLR9, MyD88, SR-A, CD36, LC3, Beclin-1, and phosphorylated level of c-Jun N-terminal kinase (JNK), P38 and extracellular-regulated protein kinase (ERK) were detected by western blotting. The phagocytosis and LC3 punctate-structures of macrophage were observed by confocal laser scanning microscope.

Key Findings: CpG-ODN significantly amplified S. aureus-induced phagocytosis and autophagy of RAW264.7 and TLR9(+/+) primary peritoneal macrophage as compared to that of Non-CpG treated cells, while such effect was abolished in TLR9(-/-) primary peritoneal macrophages. Meanwhile, CpG-ODN significantly enhanced S. aureus-induced phosphorylation of JNK and P38 but not ERK in RAW264.7. Specific inhibition of JNK or P38 by SP600125 or SB203580, dramatically down-regulated CpG-induced phagocytosis and autophagy in S. aureus-stimulated RAW264.7 and TLR9(+/+) primary peritoneal macrophage, while they showed no further down-regulation of phagocytosis and autophagy in TLR9(-/-) primary peritoneal macrophages.

Significance: Our data indicated that CpG-ODN activates TLR9-JNK/P38 signaling to promote phagocytosis and autophagy in S. aureus-stimulated macrophages, these findings provide novel insights into how innate immune cells defend bacterial infection via TLR9.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2016.07.016DOI Listing

Publication Analysis

Top Keywords

phagocytosis autophagy
24
primary peritoneal
20
peritoneal macrophage
12
jnk p38
12
bacterial infection
8
sp600125 sb203580
8
raw2647 tlr9+/+
8
tlr9+/+ primary
8
tlr9-/- primary
8
autophagy aureus-stimulated
8

Similar Publications

The NOD-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in human acute and chronic liver diseases. However, the role and cell-specific contribution of NLRP3 in liver regeneration remains unclear. Here, we found that NLRP3 was highly activated during the early stage of liver regeneration via 70% partial hepatectomy (PHx) mice model and clinical data.

View Article and Find Full Text PDF

Complement factor H drives idiopathic pulmonary fibrosis by autocrine C3 regulation, suppressing macrophage phagocytosis and enhancing fibrotic progression.

Biochem Biophys Res Commun

December 2024

Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China. Electronic address:

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease with limited therapeutic options. In this study, we identified Complement Factor H (CFH) as a critical regulator in the pathogenesis of IPF, contributing to fibrotic progression through autocrine regulation of complement component C3 and suppression of macrophage phagocytosis. Transcriptomic analysis of IPF lung tissues revealed upregulation of CFH and enrichment of pro-fibrotic pathways, including M2 macrophage infiltration.

View Article and Find Full Text PDF

Accumulated BCAAs and BCKAs contribute to the HFD-induced deterioration of Alzheimer's disease via a dysfunctional TREM2-related reduction in microglial β-amyloid clearance.

J Neuroinflammation

December 2024

Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.

A high-fat diet (HFD) induces obesity and insulin resistance, which may exacerbate amyloid-β peptide (Aβ) pathology during Alzheimer's disease (AD) progression. Branched-chain amino acids (BCAAs) accumulate in obese or insulin-resistant patients and animal models. However, roles of accumulated BCAAs and their metabolites, branched-chain keto acids (BCKAs), in the HFD-induced deterioration of AD and the underlying mechanisms remains largely unclear.

View Article and Find Full Text PDF

This study attempted to identify the relevant pathways involved in autophagy activation of pancreatic cancer and explore the mechanisms underlying immune evasion. Western blot (WB) was used to detect the expression of ITGB4, BNIP3, autophagy-related proteins and MHC-I. Co-immunoprecipitation (Co-IP) was used to verify the binding mode of ITGB4 and BNIP3.

View Article and Find Full Text PDF

Antigen-presenting cells (APCs) are readily activated after phagocytosing infected or DNA-damaged cells but not normal apoptotic cells for reasons that are not well understood. Here, we demonstrate that after DNA damage events, cytosolic dsDNA species trigger intrinsic STING signaling and the production of key immunogenic proteins, including CCL5, which renders such cells capable of APC activation upon phagocytosis. These events involve the generation of immunogenic STING-inducible endosomal vesicles (SIEVEs) additionally comprising critical autophagy-associated proteins associated with cytosolic DNA species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!