Complement triggers relocation of Mortalin/GRP75 from mitochondria to the plasma membrane.

Immunobiology

Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel. Electronic address:

Published: December 2016

Mortalin/GRP75 is a ubiquitously expressed mitochondrial chaperon that is overexpressed in cancer. Mortalin protects cells from complement-dependent cytotoxicity (CDC) and facilitates elimination of the complement C5b-9 complexes from the cell surface. We performed a nanoscopical study aimed at imaging the distribution of the C5b-9 complexes in the plasma membrane and the postulated relocation of mortalin from the mitochondria to the plasma membrane. To gain a resolution of 35nm, the locations of the C5b-9 complex and mortalin were imaged with a STED (Stimulated Emission Depletion) microscope at sub-diffraction resolution. Early changes in the spatial distribution of the C5b-9 on the cell surface are described. Juxtaposition of the labeled mortalin and C5b-9 at the plasma membrane region within minutes after complement attack is evident. Microscopical analysis of the distribution of mortalin in the vicinity of the mitochondria of complement-treated cells shows a more diffused pattern relative to control cells, proposing exit of mortalin from the mitochondria in response to complement-induced stress. In support, analysis of cytoplasmic mortalin by immunoblotting shows enhanced level of mortalin in the cytoplasm in complement-treated cells. Our data demonstrates that cells can sense complement activation at the plasma membrane and in response, swiftly send mortalin to this region in order to deactivate it.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imbio.2016.07.005DOI Listing

Publication Analysis

Top Keywords

plasma membrane
20
mortalin
9
mitochondria plasma
8
c5b-9 complexes
8
cell surface
8
distribution c5b-9
8
mortalin mitochondria
8
complement-treated cells
8
plasma
5
membrane
5

Similar Publications

Synthetic Lipid Biology.

Chem Rev

January 2025

Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States.

Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions.

View Article and Find Full Text PDF

Protein-protein interactions in the cell membrane are typically mediated by glycans, with terminal sialic acid often involved in these interactions. To probe the nature of the interactions, we developed quantitative cross-linking methods involving the glycans of the glycoproteins and the polypeptide moieties of proteins. We designed and synthesized biotinylated enrichable cross-linkers that were click-tagged to metabolically incorporate azido-sialic acid on cell surface glycans to allow cross-linking of the azido-glycans with lysine residues on proximal polypeptides.

View Article and Find Full Text PDF

Effect of cardiomyocyte-specific lipid phosphate phosphatase 3 overexpression on high-fat diet-induced cardiometabolic dysfunction in mice.

Am J Physiol Heart Circ Physiol

January 2025

Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, 355 Campus Ring Road, Saint John, New Brunswick, E2L 4L5, Canada.

Lipid phosphate phosphatase 3 (LPP3) is a membrane-bound enzyme that hydrolyzes lipid phosphates including the bioactive lipid, lysophosphatidic acid (LPA). Elevated circulating LPA production and cellular LPA signaling are implicated in obesity-induced metabolic and cardiac dysfunction. Deletion of LPP3 in the cardiomyocyte increases circulating LPA levels and causes heart failure and mitochondrial dysfunction in mice.

View Article and Find Full Text PDF

Traditional Chinese Medicine Borneol-Based Polymeric Micelles Intracerebral Drug Delivery System for Precisely Pathogenesis-Adaptive Treatment of Ischemic Stroke.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.

The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.

View Article and Find Full Text PDF

Exosomes are natural membrane-enclosed nanovesicles (30-150 nm) involved in cell-cell communication. Recently, they have garnered considerable interest as nanocarriers for the controlled transfer of therapeutic agents to cells. Here, exosomes were derived from bone marrow mesenchymal stem cells using three different isolation methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!