We report a detailed structural analysis of the psychrophilic exo-β-1,3-glucanase (GaExg55) from Glaciozyma antarctica PI12. This study elucidates the structural basis of exo-1,3-β-1,3-glucanase from this psychrophilic yeast. The structural prediction of GaExg55 remains a challenge because of its low sequence identity (37 %). A 3D model was constructed for GaExg55. Threading approach was employed to determine a suitable template and generate optimal target-template alignment for establishing the model using MODELLER9v15. The primary sequence analysis of GaExg55 with other mesophilic exo-1,3-β-glucanases indicated that an increased flexibility conferred to the enzyme by a set of amino acids substitutions in the surface and loop regions of GaExg55, thereby facilitating its structure to cold adaptation. A comparison of GaExg55 with other mesophilic exo-β-1,3-glucanases proposed that the catalytic activity and structural flexibility at cold environment were attained through a reduced amount of hydrogen bonds and salt bridges, as well as an increased exposure of the hydrophobic side chains to the solvent. A molecular dynamics simulation was also performed using GROMACS software to evaluate the stability of the GaExg55 structure at varying low temperatures. The simulation result confirmed the above findings for cold adaptation of the psychrophilic GaExg55. Furthermore, the structural analysis of GaExg55 with large catalytic cleft and wide active site pocket confirmed the high activity of GaExg55 to hydrolyze polysaccharide substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12539-016-0180-9DOI Listing

Publication Analysis

Top Keywords

cold adaptation
12
gaexg55
10
adaptation psychrophilic
8
psychrophilic yeast
8
glaciozyma antarctica
8
antarctica pi12
8
structural analysis
8
analysis gaexg55
8
gaexg55 mesophilic
8
structural
5

Similar Publications

The prevalence of coniferous trees in the forest landscapes of northeastern Siberia is conditioned by their high frost resistance. The Kajander larch ( Mayr), which can survive under natural conditions (down to -60 °C) in the cryolithozone of Yakutia, is the dominant forest-forming species. We hypothesise that our study using HPTLC-UV/Vis/FLD, TLC-GC/FID, and GC-MS methods of seasonal features of the lipid profile of Kajander larch tissues will bring us closer to understanding the mechanisms of participation of lipid components in the adaptation of this valuable tree species to the cold climate of the cryolithozone.

View Article and Find Full Text PDF

Characterization of a Natural Accession of with Hybridization and Agronomic Evaluation.

Plants (Basel)

December 2024

Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.

, valued for its perennial nature, broad adaptability, strong cold tolerance, and high economic value in forage production, plays a crucial role in combating grassland degradation, desertification, and salinization. Using morphological and cytogenetic methods, this study evaluated the cold tolerance, post-harvest regeneration capacity, and perennial characteristics of the accession 20HSC-Z9 in the Harbin region of China from 2020 to 2023. This accession exhibited a germination rate of over 90% and a 100% green-up rate, with purple coleoptiles indicating its strong cold tolerance.

View Article and Find Full Text PDF

The paulownia tree belongs to the Paulowniaceae family. Paulownia has strong vitality; has strong adaptability to harsh environmental conditions; and can be used as building raw material, as well as processing drugs and having other purposes. In the research field of MYB transcription factors of the paulownia tree, it is rare to discuss the resistance to abiotic stress.

View Article and Find Full Text PDF

Cold stress during the booting stage of rice (Oryza sativa) significantly reduces yields, particularly in temperate and high-altitude regions. This study investigates the Ctb1 gene, critical for booting-stage cold tolerance, to improve breeding of resilient rice varieties. Re-sequencing the Ctb1 promoter in 202 accessions identified six Insertions and/or deletions (InDels) and four Single nucleotide polymorphisms (SNPs), with an InDel at -1,302 bp significantly boosting Ctb1 expression and cold tolerance.

View Article and Find Full Text PDF

A genome-wide-level insight into the HSF gene family of Rhodomyrtus tomentosa and the functional divergence of RtHSFA2a and RtHSFA2b in thermal adaptation.

Plant Physiol Biochem

December 2024

Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Heat shock transcription factor (HSF) is one of the most important regulatory elements in plant development and stress response. Rhohomyrtus tomentosa has many advantages in adapting to high temperature and high humidity climates, whereas its inherence has barely been elucidated. In this study, we aimed to characterize the HSF family and investigate the thermal adaptation mechanisms of R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!