Intervention planning is essential for successful Mitral Valve (MV) repair procedures. Finite-element models (FEM) of the MV could be used to achieve this goal, but the translation to the clinical domain is challenging. Many input parameters for the FEM models, such as tissue properties, are not known. In addition, only simplified MV geometry models can be extracted from non-invasive modalities such as echocardiography imaging, lacking major anatomical details such as the complex chordae topology. A traditional approach for FEM computation is to use a simplified model (also known as parachute model) of the chordae topology, which connects the papillary muscle tips to the free-edges and select basal points. Building on the existing parachute model a new and comprehensive MV model was developed that utilizes a novel chordae representation capable of approximating regional connectivity. In addition, a fully automated personalization approach was developed for the chordae rest length, removing the need for tedious manual parameter selection. Based on the MV model extracted during mid-diastole (open MV) the MV geometric configuration at peak systole (closed MV) was computed according to the FEM model. In this work the focus was placed on validating MV closure computation. The method is evaluated on ten in vitro ovine cases, where in addition to echocardiography imaging, high-resolution μCT imaging is available for accurate validation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2016.03.011DOI Listing

Publication Analysis

Top Keywords

mitral valve
8
closure computation
8
echocardiography imaging
8
chordae topology
8
parachute model
8
model
6
personalized mitral
4
valve closure
4
computation uncertainty
4
uncertainty analysis
4

Similar Publications

Characterization of LTBP2 mutation causing mitral valve prolapse.

Eur Heart J Open

January 2025

Department of Medicine, Cardiovascular Precision Medicine Center, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel.

Aims: Mitral valve prolapse (MVP) is a common valvular disorder associated with significant morbidity and mortality, with a strong genetic basis. This study aimed to identify a mutation in a family with MVP and to characterize the valve phenotype in LTBP2 knockout (KO) mice.

Methods And Results: Exome sequencing and segregation analysis were performed on a large family with MVP.

View Article and Find Full Text PDF

Introduction: The severity of mitral stenosis (MS) is commonly assessed using mitral valve area (MVA) measured with transthoracic echocardiography (TTE). The dimensionless index (DI) of mitral valve (MV) was recently studied in degenerative MS. We evaluated DI MV in rheumatic MS and studied its relationship with clinical outcomes.

View Article and Find Full Text PDF

Infectious intracranial aneurysms (IIAs) are rare lesions with fragile arterial walls located within the aneurysms, carrying a high risk of rupture. Standard management often involves antibiotic therapy and parent artery occlusion; however, the latter carries a significant risk of cerebral infarction. This report presents a case of an unruptured IIA following cerebral infarction, successfully treated with coil embolization while preserving the parent artery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!