It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to estrogenic activity of the WWTP effluents. These results suggest that lhb gene expression may be a sensitive index of acute exposure to estrogenic chemicals in juvenile coho salmon. Further work is needed to determine the kinetics and specificity of lhb induction to evaluate its utility as a potential indicator of estrogen exposure in immature fish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2016.07.013 | DOI Listing |
Environ Sci Technol
December 2024
Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
The tire-rubber-derived ozonation product of -(1,3-dimethylbutyl)-'-phenyl--phenylenediamine (6PPD), -(1,3-dimethylbutyl)-'-phenyl--phenylenediamine-quinone (6PPD-Q), was recently discovered to cause acute mortality in coho salmon (). -Phenylenediamines (PPDs) with variable side chains distinct from 6PPD have been identified as potential replacement antioxidants, but their toxicities remain unclear under environmentally relevant ozone conditions. We herein tested the multiphase gas-surface ozone reactivity of four select PPDs [6PPD, -isopropyl-'-phenyl--phenylenediamine (IPPD), ,'-diphenyl--phenylenediamine (DPPD), and -phenyl-'-cyclohexyl--phenylenediamine (CPPD)] and evaluated the toxicity of their reaction mixtures in coho salmon, rainbow trout (), and fathead minnow ().
View Article and Find Full Text PDFJ Exp Biol
October 2024
Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA.
Pacific salmon are well known for their homing migrations; juvenile salmon learn odors associated with their natal streams prior to seaward migration, and then use these retained odor memories to guide them back from oceanic feeding grounds to their river of origin to spawn several years later. This memory formation, termed olfactory imprinting, involves (at least in part) sensitization of the peripheral olfactory epithelium to specific odorants. We hypothesized that this change in peripheral sensitivity is due to exposure-dependent increases in the expression of odorant receptor (OR) proteins that are activated by specific odorants experienced during imprinting.
View Article and Find Full Text PDFBMC Biol
July 2024
The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
Conserv Physiol
December 2023
U.S. Geological Survey, Eastern Ecological Science Center at the S.O. Conte Research Laboratory, One Migratory Way, Turners Falls, MA 01376, USA.
Rapid and accelerating warming of salmon habitat has the potential to lower productivity of Pacific salmon ( species) populations. Heat stress biomarkers can indicate where warming is most likely affecting fish populations; however, we often lack clear classifications that separate individuals with and without heat stress needed to make these tools operational. We conducted a heat exposure experiment with trials lasting 12 or 36 h using juvenile Chinook salmon () and coho salmon () to validate heat stress biomarkers in white muscle.
View Article and Find Full Text PDFJ Anim Ecol
December 2023
U. S. Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, Fairbanks, Alaska, USA.
Pulsed subsidy events create ephemeral fluxes of hyper-abundant resources that can shape annual patterns of consumption and growth for recipient consumers. However, environmental conditions strongly affect local resource availability for much of the year, and can heavily impact consumer foraging and growth patterns prior to pulsed subsidy events. Thus, a consumer's capacity to exploit pulse subsidy resources may be influenced by antecedent environmental conditions, but this has rarely been shown in nature and is unknown in aquatic ecosystems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!