Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Podocyte apoptosis induced by high levels of glucose is a key event in the development and prognosis of diabetic nephropathy (DN). Forkhead transcription factor O1 (FoxO1) has been defined as a critical mediator of oxidative stress in animal models of diabetes and is involved in mitophagy. To test the role of FoxO1 in regulating podocyte apoptosis both in vivo and in vitro, we generated FoxO1 overexpression models. High-glucose (HG) induced podocyte apoptosis with decreased mitophagy. These changes were accompanied by mitochondrial dysfunction and more severe podocyte loss in mouse kidney. FoxO1 overexpression prevented the apoptosis induced by HG. Reduction of cell apoptosis and renal damage depended upon the expression of PTEN-induced putative kinase 1 (PINK1). These findings suggest that specific overexpression of renal FoxO1 decreases podocyte apoptosis, which may be explained in part by its regulation of PINK1, and that targeting FoxO1 may represent a novel therapeutic approach for DN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2016.07.115 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!