Impact of mixture composition on self-organization in concentrated solutions of stiff helical and flexible macromolecules was studied by means of molecular dynamics simulation. The macromolecules were composed of identical amphiphilic monomer units but a fraction f of macromolecules had stiff helical backbones and the remaining chains were flexible. In poor solvents the compacted flexible macromolecules coexist with bundles or filament clusters from few intertwined stiff helical macromolecules. The increase of relative content f of helical macromolecules leads to increase of the length of helical clusters, to alignment of clusters with each other, and then to liquid-crystalline-like ordering along a single direction. The formation of filament clusters causes segregation of helical and flexible macromolecules and the alignment of the filaments induces effective liquid-like ordering of flexible macromolecules. A visual analysis and calculation of order parameter relaying the anisotropy of diffraction allow concluding that transition from disordered to liquid-crystalline state proceeds sharply at relatively low content of stiff components.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4959861DOI Listing

Publication Analysis

Top Keywords

flexible macromolecules
16
stiff helical
12
macromolecules
9
solutions stiff
8
mixture composition
8
helical flexible
8
filament clusters
8
helical macromolecules
8
flexible
6
helical
6

Similar Publications

The transfer of large-area, continuous, chemical vapor deposition (CVD)-grown graphene without introducing defects remains a challenge for fabricating graphene-based electronics. Polymer thin films are commonly used as supports for transferring graphene, but they typically require thermal annealing before transfer. However, little work has been done to thoroughly investigate how thermal annealing affects the polymer/graphene thin film when directly annealed on the growth substrate.

View Article and Find Full Text PDF

Nuclear Magnetic Resonance Spectroscopy to Study Virus Structure.

Subcell Biochem

December 2024

IDIBE, Universidad Miguel Hernández, Elche, Alicante, Spain.

Nuclear magnetic resonance (NMR) is a spectroscopic technique based on the absorption of radiofrequency radiation by atomic nuclei in the presence of an external magnetic field. NMR has followed a "bottom-up" approach to solve the structures of isolated domains of viral proteins, including capsid protein subunits, or to provide information about other macromolecular partners with which such proteins interact. NMR has been instrumental in describing conformational changes in viral proteins and nucleic acids, showing the presence of dynamic equilibria which are thought to be important at different stages of the virus life cycle.

View Article and Find Full Text PDF

Nanomaterials are increasingly being used in road engineering with the development of road construction technology. The smoke suppression performance of asphalt can be substantially improved using organic nano-montmorillonite (OMMT)/styrene-butadiene-styrene (SBS) block modifiers. Pyrolysis gas chromatography-mass spectrometry (PY-GC-MS), fluorescence microscopy (FM), thermogravimetric analysis (TG), and gel permeation chromatography (GPC) were used to explore the characteristics and microscopic mechanisms of flue gas emissions.

View Article and Find Full Text PDF

Multivalency as an interaction principle is widely utilized in nature. It enables specific and strong binding by multiple weak interactions through enhanced avidity and is a core process in immune recognition and cellular signaling, which is also a current concept in drug design. Here, we use the high signals from plasmon-enhanced fluorescence of nanoparticles to extract binding kinetics and dynamics of multivalent interactions on the single-molecule level and in real time.

View Article and Find Full Text PDF

: Magnetic resonance spectroscopy (MRS) is a valuable tool for studying metabolic processes in vivo. While numerous quantification methods exist, the advanced method for accurate, robust, and efficient spectral fitting (AMARES) is among the most used. This study introduces pyAMARES, an open-source Python implementation of AMARES, addressing the need for a flexible, user-friendly, and versatile MRS quantification tool within the Python ecosystem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!