Electron-hole pair effects in methane dissociative chemisorption on Ni(111).

J Chem Phys

Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA.

Published: July 2016

The dissociative chemisorption of methane on metal surfaces has attracted much attention in recent years as a prototype of gas-surface reactions in understanding the mode specific and bond selective chemistry. In this work, we systematically investigate the influence of electron-hole pair excitations on the dissociative chemisorption of CH4/CH3D/CHD3 on Ni(111). The energy dissipation induced by surface electron-hole pair excitations is modeled as a friction force introduced in the generalized Langevin equation, in which the independent atomic friction coefficients are determined within the local-density friction approximation. Quasi-classical trajectory calculations for CH4/CH3D/CHD3 have been carried out on a recently developed twelve-dimensional potential energy surface. Comparing the dissociation probabilities obtained with and without friction, our results clearly indicate that the electron-hole pair effects are generally small, both on absolute reactivity of each vibrational state and on the mode specificity and bond selectivity. Given similar observations in both water and methane dissociation processes, we conclude that electron-hole pair excitations would not play an important role as long as the reaction is direct and the interaction time between the molecule and metal electrons is relatively short.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4959288DOI Listing

Publication Analysis

Top Keywords

electron-hole pair
20
dissociative chemisorption
12
pair excitations
12
pair effects
8
electron-hole
5
effects methane
4
methane dissociative
4
chemisorption ni111
4
ni111 dissociative
4
chemisorption methane
4

Similar Publications

Phthalocyanine-sensitized TiO significantly enhances photocatalytic performance, but the method of phthalocyanine immobilization also plays a crucial role in its performance. In order to investigate the effect of the binding strategy of phthalocyanine and TiO on photocatalytic performance, a dual-pathway study has been conducted. On the one hand, zinc-tetra (-carbonylacrylic) aminephthalocyanine (Pc) was directly grafted onto the surface of FeO@SiO@TiO (FST).

View Article and Find Full Text PDF

The experimental and theoretical study of photovoltage formation in perovskite solar cells under pulsed laser excitation at 0.53 μm wavelength is presented. Two types of solar cells were fabricated on the base of cesium-containing triple cation perovskite films: (1) Cs(FAMA)Pb(IBr) and (2) Cs(FAMA)PbSn(IBr).

View Article and Find Full Text PDF

This study employed a hydrothermal method to coat CuS onto PbS quantum dots loaded with ZnO, resulting in a core-shell-structured (PbS/ZnO)@CuS hetero-structured photocatalyst. The sulfide coating enhanced the photocatalyst's absorption in the near-infrared to visible light range and effectively reduced electron-hole (h) pair recombination during photocatalytic processes. Electron microscopy analysis confirmed the successful synthesis of this core-shell structure using polyvinylpyrrolidone (PVP); however, the spatial hindrance effect of PVP led to a disordered arrangement of the CuS lattice, facilitating electron-hole recombination.

View Article and Find Full Text PDF

A Magnetic Photocatalytic Composite Derived from Waste Rice Noodle and Red Mud.

Nanomaterials (Basel)

December 2024

College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.

This study is the first to convert two waste materials, waste rice noodles (WRN) and red mud (RM), into a low-cost, high-value magnetic photocatalytic composite. WRN was processed via a hydrothermal method to produce a solution containing carbon quantum dots (CQDs). Simultaneously, RM was dissolved in acid to form a Fe ion-rich solution, which was subsequently mixed with the CQDs solution and underwent hydrothermal treatment.

View Article and Find Full Text PDF

Visible light photocatalysts hold great promise for water purification, yet research on highly efficient, non-toxic photocatalysts is limited. This study synthesized novel g-CN/AlOOH photocatalytic nanocomposites via thermal condensation, enhancing adsorption and visible light degradation by 36-fold and 11-fold, respectively, compared to g-CN alone. The nanocomposites achieved a 98% removal rate of methyl orange under xenon lamp irradiation (>400 nm) for 1 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!