A novel series (13) of isoxazoline functionalized coumarins was synthesized through 1,3-dipolar cyclization of nitrile oxides with Allylated coumarins. Synthesis of effective and target selective immunostimulators through conjugation of diversely substituted isoxazolines and 7-hydroxycoumarins is the focus of the present article. The proposed synthetic scheme was observed to be highly regiospecific yielding attempted conjugates in good yield (>90%). Kinetic resolution of the racemates was carried out by employing lipase B from Candida antarctica (CALB). The synthesized compounds were screened in vitro and in vivo for their biological activities viz. toxicity and impact on splenocyte proliferation (T- and B-cell proliferation), antibody production (HA titre), delayed-type hypersensitivity reaction (DTH), T-cell subtypes (CD4 and CD8), cytokine production (IL-2, IFN-γ, and IL-4) and NO (macrophage) production. Our results establish that isoxazoline functionalized coumarins exhibit excellent immune potentiating activity especially compounds 2, 4 and 8 whose activity is more than that of Levimasole as standard. The structure activity relations are explained in light of the structural/functional aspects of tested compounds. To the best of our knowledge the presented work is first of its kind and is presaged to prove very useful for the design and synthesis of bis-heterocycle based novel, therapeutically selective and effective immunopotentiators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2016.07.026 | DOI Listing |
J Org Chem
December 2024
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
A novel and highly efficient Pd-catalyzed approach for the synthesis of bis-heterocycles featuring both isoxazoline and methyleneindole motifs is demonstrated. The in situ formation of vinyl Pd(II) species through an alkyne-tethered carbamoyl chloride cyclization is crucial, and the innovative Pd-catalyzed carboetherification of β,γ-unsaturated oximes with vinyl Pd(II) species has been developed. This method is not only operationally straightforward but also exhibits a broad substrate scope and excellent functional group tolerance.
View Article and Find Full Text PDFJ Org Chem
December 2024
Department of Chemistry, University of Illinois Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States.
A diastereoselective addition and rearrangement reaction has been developed for the synthesis of pyrrolidine-2-ylidenes from N-isoxazolines and electron-deficient allenes. This method proceeds via the rearrangement of a proposed -alkenylisoxazoline intermediate to generate densely functionalized pyrrolidine-2-ylidenes under simple catalyst-free conditions that tolerate ketone substituents and install relative stereochemistry at positions 3 and 4 of the heterocycle. Reaction optimization and the substrate scope are described in addition to studies evaluating the reactivity of the -dione and enaminone groups of the products.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
Stereoselective alkene 1,2-difunctionalization is a privileged strategy to access three-dimensional C(sp)-rich chiral molecules from readily available "flat" carbon feedstocks. State-of-the-art approaches exploit chiral transition metal-catalysts to enable high levels of regio- and stereocontrol. However, this is often achieved at the expense of a limited alkene scope and reduced generality.
View Article and Find Full Text PDFChem Asian J
November 2024
Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, 411 008, India.
Org Lett
November 2024
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
An intramolecular iodine(III)-mediated keto-oximation of -alkynyl hydroxylamines offers rapid and straightforward access to 3-acyl Δ-isoxazolines and 1,2-oxazines. This approach features mild, metal-free, and aerobic reaction conditions with good functional group tolerance. Moreover, the synthetic utility of this method is demonstrated by the synthesis of unique structural motifs such as isoxazolidine, 3-vinyl isoxazoline, and 2,5-diphenylpyrazine derivatives by the conversion of 3-acyl Δ-isoxazolines, thereby showcasing its efficiency and applicability in synthetic chemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!