In this study we present the use of co-axial electrospinning to produce core-shell composite micro-/nano- fibers of polyurethane (PU) and cellulose acetate phthalate (CAP). The designed fibers possess enhanced mechanical properties with a tensile strength of 13.27±2.32MPa, which is a clear improvement over the existing CAP fibers that suffer from a poor mechanical strength (0.2±0.03MPa). The CAP imparts pH responsiveness to the core-shell structure giving the fibers potential for "semen sensitive" (intravaginal) drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2016.06.066DOI Listing

Publication Analysis

Top Keywords

cellulose acetate
8
acetate phthalate
8
intravaginal drug
8
drug delivery
8
fibers
5
responsive polyurethane
4
polyurethane core
4
core cellulose
4
phthalate shell
4
shell electrospun
4

Similar Publications

Eco-Friendly, Sound Absorbing Materials Based on Cellulose Acetate Electrospun Fibers/Luffa Cylindrica Composites.

Macromol Rapid Commun

December 2024

Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue Nicosia, Aglantzia, 2109, Cyprus.

Sound absorption plays a crucial role in addressing noise pollution that may cause harm to both human health and wildlife. To tackle this environmental issue, the implementation of natural-based sound absorbing materials attracts considerable attention in the last few years. In this study, sound absorbing, eco-friendly composites are produced by combining a 3D natural sponge namely Luffa Cylindrica (LC) with cellulose acetate (CA) microfibrous layers that are fabricated through electrospinning.

View Article and Find Full Text PDF

Cigarette butts are classified as plastic waste due to their composition of cellulose acetate fibers and are commonly found in beach sand. Their persistence in the environment, low biodegradability, and potential to interact with metals and metalloids during the aging process make them a significant subject of interest for research on coastal marine ecosystems. The aim of this study is to investigate the presence of metals such as hexavalent chromium Cr (VI), cadmium (Cd), and the metalloid arsenic (As) in cigarette butts (CBs), cigarette butt fibers (CBFs), and sand on a tourist beach in Cartagena, Colombia.

View Article and Find Full Text PDF

Formation of Nonspherical Cellulose Acetate Microparticles under Microflow.

Langmuir

December 2024

Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.

Nonspherical particles have gained significant interest owing to their unique shapes and large specific surface areas, making them suitable for a wide range of applications, such as drug delivery, catalysis, and adsorption. However, conventional methods for preparing nonspherical particles face certain limitations. In this study, we propose a simple method for fabricating nonspherical cellulose acetate (CA) microparticles using a microfluidic device in which droplets undergo rapid diffusion in a continuous aqueous phase.

View Article and Find Full Text PDF

Cellulose was extracted from rice straw waste by the intergrated technique of CHOH/HO, dilute alkali treatment and HO bleaching process, and rice straw-derived cellulose acetate was obtained by the acetylation reaction of cellulose. Flexible porous 3D biochars were constructed by the electrospinning, NaBH foaming and calcination process. Effects of calcination temperature, adsorption time, pH, pollutant concentration, interfering anions, and cycle times on the adsorption performance of 3D biochar were systematically investigated.

View Article and Find Full Text PDF

Additive Fabrication of Polyaniline and Carbon-Based Composites for Energy Storage.

Polymers (Basel)

November 2024

School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.

The growing demand for efficient energy storage systems, particularly in portable electronics and electric vehicles, has led to increased interest in supercapacitors, which offer high power density, rapid charge/discharge rates, and long cycle life. However, improving their energy density without compromising performance remains a challenge. In this study, we developed novel 3D-printed reduced graphene oxide (rGO) electrodes coated with polyaniline (PANI) to enhance their electrochemical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!