This study aims to gain insights into the intermolecular interactions present in thermoplastic starch (TPS)/montmorillonite (MMT) nanocomposites prepared using water and/or glycerol as plasticizers. Specifically, the impact of using different glycerol/water proportions on the nature of gelatinization and retrogradation processes is studied. Nanocomposites were characterized by rheometry, scanning electron microscopy (SEM) and X-rays diffraction (XRD). It is shown that clay tactoids preferentially interact with glycerol molecules rather than starch macromolecules. Consequently, the effects of MMT incorporation strongly depend on the glycerol/water ratio; when a ratio of 0.5 is used minor variations were observed on the starch gelatinization process-although stronger clays-starch interactions were evident-whereas at higher ratios the addition of clays significantly increased the gelatinization temperature, up to values over 100°C. In the gelatinization process of starch in TPS samples having only glycerol as a plasticizer, the leaching of amylose and the melting of amylopectin crystalline domains seem to occur simultaneously. This different gelatinization mechanism produces a TPS having a substantially different morphology, which exhibited reduced retrogradation characteristics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2016.05.065 | DOI Listing |
J Sci Food Agric
January 2025
College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang, PR China.
Background: Canna edulis is a high-quality resistant starch raw material, especially for making flour products. This study aimed to investigate the effect of Canna edulis starch (CES) on the properties of flour, rheology of dough and quality of semi-dry noodles. The CES replaced part of the wheat flour in the semi-dry noodle formula.
View Article and Find Full Text PDFJ Food Sci
January 2025
School of Life Sciences and Chemistry, Minnan Science and Technology College, Quanzhou, Fujian, China.
Polyphenols are known to interact with starch to form the V-type inclusion complex or the noninclusive complex. It is hypothesized that the addition of polyphenols could improve the properties of Chinese yam (Dioscorea opposita Thunb.) starch, and the properties of the complexes could be regulated by controlling the additive amount of polyphenols.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China. Electronic address:
Quillaja saponins (QS), a natural amphiphilic food additive, have significant potential in modulating the properties of starchy products. However, a systematic understanding of this phenomenon and the underlying molecular mechanisms remains lacking. In this study, two-stage molecular dynamics (MD) simulations combined with multiple experimental approaches were employed to investigate the modulation of starch properties by QS through six chain dynamic behaviors.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Food Science and Engineering, Changchun University, Changchun, Jilin 130022, China. Electronic address:
The presence of exogenous protein can delay starch digestion. However, systematic studies on the effects of protein on starch digestion under various heat treatments still need to be completed. In this study, the effects of exogenous protein and heat treatments on corn starch digestibility were investigated.
View Article and Find Full Text PDFFoods
December 2024
Department of life Science, Yuncheng University, Yuncheng 044000, China.
With an increasing number of people pursuing a healthy diet, people have gradually realized the significance of adequate dietary fiber in their diets. In this experiment, wheat bran was collected from eight regions in China with different longitudes and latitudes, different altitudes, and average temperatures during the filling period to study the differences in the Arabinoxylan (AX) of wheat bran. The higher the altitude of the wheat production area was, the higher the AX content in the wheat bran was.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!