A novel catalyst for the reduction of 4-nitrophenol (4-NP) was prepared using carboxyl group-functionalized multiwalled carbon nanotubes (MWCNTs), polymer matrix, and silver nanoparticles (AgNPs). The AgNPs were prepared by the reduction of silver nitrate by trisodium citrate in the MWCNTs-polymer nanocomposite; the size of the synthesized AgNPs was found to be 3nm (average diameter). The synthesized nanocomposites were characterized using several analytical techniques. Ag@MWCNTs-polymer composite in the presence of sodium borohydride (NaBH4) in aqueous solution is an effective catalyst for the reduction of 4-NP. The apparent kinetics of reduction has a pseudo-first-order kinetics, and the rate constant and catalytic activity parameter were found to be respectively 7.88×10(-3)s(-1)and 11.64s(-1)g(-1). The MWCNTs-polymer nanocomposite renders stability to AgNPs against the environment and the reaction medium, which means that the Ag@MWCNTs-polymer composite can be re-used for many catalytic cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2016.05.018DOI Listing

Publication Analysis

Top Keywords

polymer matrix
8
matrix silver
8
silver nanoparticles
8
multiwalled carbon
8
carbon nanotubes
8
reduction 4-nitrophenol
8
catalyst reduction
8
mwcnts-polymer nanocomposite
8
ag@mwcnts-polymer composite
8
reduction
5

Similar Publications

Ion beam induced secondary electron tomography of acrylonitrile-styrene-acrylate/polycarbonate polymer blends for fused filament fabrication and injection moulding.

Sci Rep

January 2025

Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Orgánica, IMEYMAT, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain.

Polymer blending is an interesting strategy to broaden the combination of properties available for a variety of applications. To understand the behaviour of the new materials obtained as well as the influence of the fabrication parameters used, methods to analyse the distribution of polymers in the blend with resolution below the micrometer are required. In this work, we demonstrate the capability of focused ion beam (FIB) tomography to provide 3D information of the polymer distribution in objects obtained by blending acrylonitrile-styrene-acrylate (ASA) with polycarbonate (PC) (50 wt%), fabricated by Fused Filament Fabrication (FFF) and by Injection Moulding (IM).

View Article and Find Full Text PDF

A novel DES-enhanced sodium alginate-based conductive organohydrogel fiber for high-performance wearable sensors.

Int J Biol Macromol

January 2025

College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China; Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), 215123, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China. Electronic address:

Conductive organohydrogel fibers based on sodium alginate (SA) exhibit remarkable flexibility and electrical conductivity, making them ideal candidates for conformal skin adhesion and real-time monitoring of human activity signals. However, traditional conductive hydrogels often suffer from issues such as uneven distribution of conductive fillers, and achieving the integration of high mechanical strength, stretchability, and transparency using environmentally friendly methods remains a significant challenge. In this study, a novel and sustainable strategy was developed to fabricate dual-network organohydrogel fibers using sodium alginate as the primary material.

View Article and Find Full Text PDF

Preparation of photodynamic-controlled release packaging for pork preservation and its visualization.

Food Chem

January 2025

Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China. Electronic address:

The current study aimed to synthesize a ZIF-8 metal-organic framework loaded with the Rose Bengal (ZIF-8@RB) as the photodynamic sterilization ingredient to address the uncontrolled release of active ingredients in packaging films. The photodynamic controlled release packaging film was then prepared using a PVDF polymer matrix via uniaxial electrospinning. The microstructure, particle size, excitation wavelength, and singlet oxygen yield of ZIF-8@RB were examined.

View Article and Find Full Text PDF

Bioinspired Antiswelling Hydrogel Sensors with High Strength and Rapid Self-Recovery for Underwater Information Transmission.

ACS Appl Mater Interfaces

January 2025

School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

Hydrogel-based sensors typically demonstrate conspicuous swelling behavior in aqueous environments, which can severely compromise the mechanical integrity and distort sensing signals, thereby considerably constraining their widespread applicability. Drawing inspiration from the multilevel heterogeneous structures in biological tissues, an antiswelling hydrogel sensor endowed with high strength, rapid self-recovery, and low swelling ratio was fabricated through a water-induced phase separation and coordination cross-linking strategy. A dense heterogeneous architecture was developed by the integration of "rigid" quadridentate carboxyl-Zr coordination bonds and "soft" hydrophobic unit-rich regions featuring π-π stacking and cation-π interactions into the hydrogels.

View Article and Find Full Text PDF

Measuring XNA polymerase fidelity in a hydrogel particle format.

Nucleic Acids Res

January 2025

Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, United States.

Growth in the development of engineered polymerases for synthetic biology has led to renewed interest in assays that can measure the fidelity of polymerases that are capable of synthesizing artificial genetic polymers (XNAs). Conventional approaches require purifying the XNA intermediate of a replication cycle (DNA → XNA → DNA) by denaturing polyacrylamide gel electrophoresis, which is a slow, costly, and inefficient process that requires a large-scale transcription reaction and careful extraction of the XNA strand from the gel slice. In an effort to streamline the assay, we developed a purification-free approach in which the XNA transcription and reverse transcription steps occur inside the matrix of a hydrogel-coated magnetic particle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!