Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites.

Carbohydr Polym

National Research Centre, Textile Division, Textile Chemistry and Technology, Department of Preparation and Finishing of Cellulosic Fibers, Scopus affiliation ID 60014618, 33 El Bohouth st.-Dokki-Giza, Cairo, P.O. Box 12622, Egypt. Electronic address:

Published: October 2016

Current research was undertaking with a view to innovate a new approach for development of conductive - coated textile materials through coating cotton fabrics with nanocellulose/polypyrrole composites. The study was designed in order to have a clear understanding of the role of nanocellulose as well as modified composite thereof under investigation. It is anticipated that incorporation of nanocellulose in the pyrrole/cotton fabrics/FeCl3/H2O system would form an integral part of the composites with mechanical, electrical or both properties. Three different nanocellulosic substrates are involved in the oxidation polymerization reaction of polypyrrole (Ppy) in presence of cotton fabrics. Polymerization was subsequently carried out by admixing at various ratios of FeCl3 and pyrrole viz. Ppy1, Ppy2 and pp3. The conductive, mechanical and thermal properties of cotton fabrics coated independently with different nanocellulose/polypyrrole were investigated. FTIR, TGA, XRD, SEM and EDX were also used for further characterization. Results signify that, the conductivity of cotton fabrics increases exponentially with increasing the dose of pyrrole and oxidant irrespective of nanocellulose substrate used. While, the mechanical properties of cotton fabrics are not significantly affected by the oxidant treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2016.05.054DOI Listing

Publication Analysis

Top Keywords

cotton fabrics
24
properties cotton
8
cotton
6
fabrics
6
advancement conductive
4
conductive cotton
4
fabrics situ
4
situ polymerization
4
polymerization polypyrrole-nanocellulose
4
polypyrrole-nanocellulose composites
4

Similar Publications

Niobium-Containing Phosphate Glasses Prepared by the Liquid-Phase Method.

Int J Mol Sci

December 2024

Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

Phosphate invert glasses (PIGs) have been attracting attention as materials for bone repair. PIGs have a high flexibility in chemical composition because they are composed of orthophosphate and pyrophosphate and can easily incorporate various ions in their glass networks. In our previous work, incorporation of niobium (Nb) into melt-quench-derived PIGs was effective in terms of controlling their ion release, and Nb ions promoted the activity of osteoblast-like cells.

View Article and Find Full Text PDF

Cotton GhMAX2 promotes single-celled fiber elongation by releasing the GhS1FA-mediated inhibition of fatty acid biosynthesis.

Plant Cell Rep

January 2025

State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.

Cotton GhMAX2 positively regulates fiber elongation by mediating the degradation of GhS1FA, which transcriptionally represses GhKCS9 expression. Strigolactones (SLs) are known to promote cotton fiber development. However, the precise molecular relationship between SL signaling and fiber cell elongation remains unclear.

View Article and Find Full Text PDF

The durability and flame retardancy of cotton fabrics have been the focus of long-term research. In this paper, a method for preparing flame retardants through the direct modification of biomass was proposed, and the durable flame retardant of homologous cottonseed meal modified biomass flame retardants for cotton fabrics was achieved through biomass composition analysis and modeling. In this study, a cottonseed meal-phosphoric acid-boric acid synergistic bio-based flame retardant (CPB) was synthesized and characterized.

View Article and Find Full Text PDF

Industrialization of military textiles faces many challenges and some requirements such as durability, protection and suitability for hostile environment must be provided. Herein, fluorescent protective cotton with ultraviolet radiation (UVR)-protection and antimicrobial property was currently prepared via the immobilization of lanthanide-metal organic framework (Ln-MOF). Cotton fabrics were primarily activated via cationization process with 3-Chloro-2-hydroxypropyltrimethyl ammonium chloride to obtain the cationized cotton (Q-cotton).

View Article and Find Full Text PDF

Developing Chemical Signatures for Categories of Household Consumer Products Using Suspect Screening Analysis.

Environ Sci Technol

January 2025

Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States.

Consumer products are a major source of chemicals that may pose a health risk. It is important to understand what chemicals are in these products to evaluate risk and assess new products for uncommon ingredients. Suspect screening analysis (SSA) using two-dimensional gas chromatography-high-resolution-time-of-flight/mass spectrometry (GCxGC-HR-TOF/MS) was applied to 92 consumer products from 5 categories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!