Adherence of pathogens to extracellular matrix proteins and host cells is one of the essential steps in the microbial colonization of the human organism. The adhesion of C. glabrata, i.e. the second major causative agent of human disseminated candidiases after C. albicans, to the host epithelium mainly engages specific fungal cell wall proteins - epithelial adhesins (Epa) - in particular, Epa1, Epa6 and Epa7. The aim of the present study was to identify the major Epa protein involved in the interactions with the human extracellular matrix protein - fibronectin - and to present the kinetic and thermodynamic characteristics of these interactions. A relatively novel gel-free approach, i.e. the "cell surface shaving" that consists in short treatment of fungal cells with trypsin was employed to identify the C. glabrata surfaceome. Epa6 was purified, and the isolated protein was characterized in terms of its affinity to human fibronectin using a microplate ligand-binding assay and surface plasmon resonance measurements. The dissociation constants for the binding of Epa6 to fibronectin were determined to range between 9.03 × 10(-9) M and 7.22 × 10(-8) M, depending on the method used (surface plasmon resonance measurements versus the microplate ligand-binding assay, respectively). The identified fungal pathogen-human host protein-protein interactions might become a potential target for novel anticandidal therapeutic approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.18388/abp.2016_1328 | DOI Listing |
Stem Cells
January 2025
Bioengineering Graduate Program, University of Notre Dame, Notre Dame, 46556 IN, USA.
Myocardial infarction can lead to the loss of billions of cardiomyocytes, and while cell-based therapies are an option, immature nature of in vitro-generated human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) is a roadblock to their development. Existing iPSC differentiation protocols don't go beyond producing fetal iCMs. Recently, adult extracellular matrix (ECM) was shown to retain tissue memory and have some success driving tissue-specific differentiation in unspecified cells in various organ systems.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy.
Irisin is a newly discovered 12 kDa messenger protein involved in energy metabolism. Irisin affects signaling pathways in several types of cancer; however, the role of irisin in metastatic melanoma (MM) has not been described yet. We explored the biological effects of irisin in in vitro models of MM cells (HBL, LND1, Hmel1 and M3) capable of the oncogenic activation of BRAF.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pathology, Albert Szent-Györgyi Medical Center, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
Fibronectin glomerulopathy (FG) is caused by fibronectin 1 () gene mutations. A renal biopsy was performed on a 4-year-old girl with incidentally discovered proteinuria (150 mg/dL); her family history of renal disease was negative. Markedly enlarged glomeruli (mean glomerular diameter: 196 μm; age-matched controls: 140 μm), α-SMA-positive and Ki-67-positive mesangial cell proliferation (glomerular proliferation index 1.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths globally, with a persistently low five-year survival rate of only 14-17%. High rates of metastasis contribute significantly to the poor prognosis of NSCLC, in which inflammation plays an important role by enhancing tumor growth, angiogenesis, and metastasis. Targeting inflammatory pathways within cancer cells may thus represent a promising strategy for inhibiting NSCLC metastasis.
View Article and Find Full Text PDFSci Rep
January 2025
College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju-si, 52828, Gyeongnam, Republic of Korea.
Epithelial-mesenchymal transition (EMT) is designated as one of the prime causes of chemoresistance in many cancers. In our previous study we established that cisplatin resistance in ovarian cancer (OC) is associated with EMT using sensitive OV90 cells and its resistant counterparts OV90CisR1 and OV90CisR2. In this study, we revealed through RNAseq analysis that ITGA1 can play essential part in EMT mediated cisplatin resistance in OC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!