A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DNA Sensing via TLR-9 Constitutes a Major Innate Immunity Pathway Activated during Erythema Nodosum Leprosum. | LitMetric

The chronic course of lepromatous leprosy may be interrupted by acute inflammatory episodes known as erythema nodosum leprosum (ENL). Despite its being a major cause of peripheral nerve damage in leprosy patients, the immunopathogenesis of ENL remains ill-defined. Recognized by distinct families of germline-encoded pattern recognition receptors, endogenous and pathogen-derived nucleic acids are highly immunostimulatory molecules that play a major role in the host defense against infections, autoimmunity, and autoinflammation. The aim of this work was to investigate whether DNA sensing via TLR-9 constitutes a major inflammatory pathway during ENL. Flow cytometry and immunohistochemistry analysis showed significantly higher TLR-9 expression in ENL when compared with nonreactional lepromatous patients, both locally in the skin lesions and in circulating mononuclear cells. The levels of endogenous and pathogen-derived TLR-9 ligands in the circulation of ENL patients were also higher. Furthermore, PBMCs isolated from the ENL patients secreted higher levels of TNF, IL-6, and IL-1β in response to a TLR-9 agonist than those of the nonreactional patients and healthy individuals. Finally, E6446, a TLR-9 synthetic antagonist, was able to significantly inhibit the secretion of proinflammatory cytokines by ENL PBMCs in response to Mycobacterium leprae lysate. Our data strongly indicate that DNA sensing via TLR-9 constitutes a major innate immunity pathway involved in the pathogenesis and evolution of ENL. Thus, the use of TLR-9 antagonists emerges as a potential alternative to more effectively treat ENL aiming to prevent the development of nerve injuries and deformities in leprosy.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1600042DOI Listing

Publication Analysis

Top Keywords

dna sensing
12
sensing tlr-9
12
tlr-9 constitutes
12
constitutes major
12
enl
9
tlr-9
8
major innate
8
innate immunity
8
immunity pathway
8
erythema nodosum
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!