Repression of phosphoglycerate dehydrogenase sensitizes triple-negative breast cancer to doxorubicin.

Cancer Chemother Pharmacol

The Fifth Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, People's Republic of China.

Published: September 2016

Purpose: Approximately 70 % of triple-negative breast cancer (TNBC) cell lines are identified to upregulate phosphoglycerate dehydrogenase (PHGDH), which regulates the intracellular synthesis of serine and glycine, and promotes tumor growth. In this work, the impact of this pathway on doxorubicin efficacy was evaluated.

Methods: MDA-MB-468, BT-20 and HCC70 cells were transfected with lentiviral vectors expressing short hairpin RNA (shRNA) against PHGDH. In response to doxorubicin treatment, cellular proliferation was measured, ROS were evaluated and intracellular levels of serine, glycine and glutathione (GSH) were determined using liquid chromatography-mass spectrometry. A TNBC orthotopic tumor model was used to examine the effect of PHGDH on doxorubicin efficacy in vivo.

Results: TNBC cells exposed to doxorubicin undergo metabolic remodeling, resulting in increased glucose flux for serine synthesis regulated by PHGDH. Serine is then converted into GSH, which counters doxorubicin-induced formation of ROS. Consequently, suppression of PHGDH by the use of the shRNA caused doxorubicin-induced oxidative stress and increased doxorubicin sensitivity. The enhancement of doxorubicin efficacy through simultaneous suppression of PHGDH was validated in a mouse tumor model.

Conclusion: These results shed light on PHGDH that could be a promising target for increasing the effectiveness of chemotherapy in patients with TNBC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00280-016-3117-4DOI Listing

Publication Analysis

Top Keywords

doxorubicin efficacy
12
phosphoglycerate dehydrogenase
8
triple-negative breast
8
breast cancer
8
serine glycine
8
suppression phgdh
8
doxorubicin
7
phgdh
7
repression phosphoglycerate
4
dehydrogenase sensitizes
4

Similar Publications

Doxorubicin and topotecan resistance in ovarian cancer: Gene expression and microenvironment analysis in 2D and 3D models.

Biomed Pharmacother

January 2025

Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland. Electronic address:

This study explores the mechanisms underlying chemotherapy resistance in ovarian cancer (OC) using doxorubicin (DOX) and topotecan (TOP)-resistant cell lines derived from the drug-sensitive A2780 ovarian cancer cell line. Both two-dimensional (2D) monolayer cell cultures and three-dimensional (3D) spheroid models were employed to examine the differential drug responses in these environments. The results revealed that 3D spheroids demonstrated significantly higher resistance to DOX and TOP than 2D cultures, suggesting a closer mimicry of in vivo tumour conditions.

View Article and Find Full Text PDF

Background: Thymoma is a rare mediastinal neoplasm originating from thymic epithelial cells, often associated with paraneoplastic syndromes. These syndromes can manifest as a range of autoimmune disorders, including myasthenia gravis, pure red cell aplasia, and aplastic anemia. Clinical trials involving the use of immune checkpoint inhibitors (ICIs) in thymoma have been complicated by a high incidence of immune-related adverse effects (irAEs).

View Article and Find Full Text PDF

Morphological Features Influence the Drug Loading and Delivery Efficacy of Photoactivatable Gold Nanocarriers for Antitumor Photo/Chemotherapy.

ACS Appl Mater Interfaces

January 2025

Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China.

Photoactivatable gold nanocarriers are transforming antitumor therapies by leveraging their distinctive physicochemical properties, enabling targeted drug delivery and enhanced therapeutic efficacy in cancer treatment. This study systematically investigates how surface topography and morphology of gold nanocarriers influence drug loading capacity, light-to-heat conversion efficiency, and overall therapeutic performance in photo/chemotherapy. We synthesized four distinct morphologies of gold nanoparticles: porous gold nanocups (PAuNCs), porous gold nanospheres (PAuNSs), solid gold nanocups (SAuNCs), and solid gold nanospheres (SAuNSs).

View Article and Find Full Text PDF

Background: Multi-omics features of cell-free DNA (cfDNA) can effectively improve the performance of non-invasive early diagnosis and prognosis of cancer. However, multimodal characterization of cfDNA remains technically challenging.

Methods: We developed a comprehensive multi-omics solution (COMOS) to specifically obtain an extensive fragmentomics landscape, presented by breakpoint characteristics of nucleosomes, CpG islands, DNase clusters and enhancers, besides typical methylation, copy number alteration of cfDNA.

View Article and Find Full Text PDF

Doxorubicin is an anthracycline antibiotic widely used in cancer therapy. However, its cytotoxic properties affect both cancerous and healthy cells. Combining doxorubicin with antioxidants such as ferulic acid reduces its side effects, while simultaneously enhancing therapeutic effectiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!