Background And Aim: Environmental factors are supposed to play a decisive role in the pathogenesis of inflammatory bowel diseases [IBDs]. Increased dietary salt intake has been linked with the development of autoimmune diseases, but the impact of a salt-enriched diet on the course of IBD remains unknown. In this study, we examined whether high salt intake alters mucosal cytokine production and exacerbates colitis.

Methods: Normal intestinal lamina propria mononuclear cells [LPMCs] were activated with anti-CD3/CD28 in the presence or absence of increasing concentrations of sodium chloride [NaCl] and/or SB202190, a specific inhibitor of p38/MAP Kinase. For in vivo experiments, a high dose of NaCl was administered to mice 15 days before induction of trinitrobenzene-sulfonic acid [TNBS]-colitis or dextran sulfate sodium [DSS]-colitis. In parallel, mice were given SB202190 before induction of TNBS-colitis. Transcription factors and effector cytokines were evaluated by flow-cytometry and real-time PCR.

Results: IL-17A, IL-23R, TNF-α, and Ror-γT were significantly increased in human LPMCs following NaCl exposure, while there was no significant change in IFN-γ, T-bet or Foxp3. Pharmacologic inhibition of p38/MAPK abrogated the NaCl-inducing effect on LPMC-derived cytokines. Mice receiving the high-salt diet developed a more severe colitis than control mice, and this effect was preventable by SB202190.

Conclusions: Our data indicated that exposure of intestinal mononuclear cells to a high-NaCl diet enhanced effector cytokine production and contributed to the exacerbation of experimental colitis in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ecco-jcc/jjw139DOI Listing

Publication Analysis

Top Keywords

cytokine production
12
diet enhanced
8
experimental colitis
8
colitis mice
8
salt intake
8
mononuclear cells
8
mice
6
sodium chloride-enriched
4
diet
4
chloride-enriched diet
4

Similar Publications

Purpose: We designed a CD19-targeted chimeric antigen receptor (CAR) comprising a calibrated signaling module, termed 1XX, that differs from that of conventional CD28/CD3ζ and 4-1BB/CD3ζ CARs. Preclinical data demonstrated that 1XX CARs generated potent effector function without undermining T-cell persistence. We hypothesized that 1XX CAR T cells may be effective at low doses and elicit minimal toxicities.

View Article and Find Full Text PDF

Background: Hypoxia in tumor cells is linked to increased drug resistance and more aggressive behavior. In pancreatic cancer, the tumor microenvironment is notably hypoxic and exhibits strong immunosuppressive properties. Given that immunotherapy is now approved for pancreatic cancer treatment, further understanding of how pancreatic tumor cell hypoxia influences T-cell cytotoxicityis essential.

View Article and Find Full Text PDF

Partially hydrolyzed guar gum alleviates neurological deficits and gastrointestinal dysfunction in mice with traumatic brain injury.

Neurosurg Rev

January 2025

Department of Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Zhou shan hui shui Community,199 Hailing South Road, Taizhou, Jiangsu Province, 225300, China.

Traumatic brain injury (TBI)-associated neuroinflammation and neurotoxicity can induce gastrointestinal dysfunction through the brain-gut axis. Partially hydrolyzed guar gum (PHGG) was demonstrated to exert beneficial health effects by altering gut microbiota and short-chain fatty acids (SCFAs) production. Our study aimed to explore the effects of PHGG on gastrointestinal dysfunction in TBI mouse models.

View Article and Find Full Text PDF

The neurological implications of micro- and nanoplastic exposure have recently come under scrutiny due to the environmental prevalence of these synthetic materials. Parkinson's disease (PD) is a major neurological disorder clinically characterized by intracellular Lewy-body inclusions and dopaminergic neuronal death. These pathological hallmarks of PD, according to Braak's hypothesis, are mediated by the afferent propagation of α synuclein (αS) via the enteric nervous system, or the so-called gut-brain axis.

View Article and Find Full Text PDF

Research progress on Sertoli cell secretion during spermatogenesis.

Front Endocrinol (Lausanne)

January 2025

Sichuan Provincial Key Laboratory of Traditional Chinese Medicine Regulation of Metabolic Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.

Sertoli cells (SCs), as the somatic cells in the testis of male mammals, play a crucial role in the close association with germ cells. The blood-testicular barrier (BTB), established by their tight junctions, provides immune protection to germ cells, leading to their characterization as "sentinel" cells. Moreover, the physiological process of testicular development and spermatogenesis in male animals is intricately tied to the secretory activities of SCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!