The subgenus Mollienesia is a diverse group of freshwater fishes, including species that have served as important models across multiple biological disciplines. Nonetheless, the taxonomic history of this group has been conflictive and convoluted, in part because the evolutionary relationships have not been rigorously resolved. We conducted a comprehensive molecular phylogenetic analysis of the subgenus Mollienesia to identify taxonomic discrepancies and potentially identify undescribed species, estimate ancestral areas of origin and estimate dates of divergence, as well as explore biogeographical patterns. Our findings confirm the presence of three main clades composed of the P. latipinna, P. sphenops, and P. mexicana species complexes. Unlike previously hypothesized morphology-based analyses, species found on the Caribbean Islands are not part of Mollienesia, but are more closely related to species of the subgenus Limia. Our study also revealed several taxonomic inconsistencies and distinct lineages in the P. mexicana species complex that may represent undescribed species. The diversity in the subgenus Mollienesia is a result of dynamic geologic activity leading to vicariant events, dispersal across geologic blocks, and ecological speciation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2016.07.025 | DOI Listing |
Mol Phylogenet Evol
October 2016
Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA.
The subgenus Mollienesia is a diverse group of freshwater fishes, including species that have served as important models across multiple biological disciplines. Nonetheless, the taxonomic history of this group has been conflictive and convoluted, in part because the evolutionary relationships have not been rigorously resolved. We conducted a comprehensive molecular phylogenetic analysis of the subgenus Mollienesia to identify taxonomic discrepancies and potentially identify undescribed species, estimate ancestral areas of origin and estimate dates of divergence, as well as explore biogeographical patterns.
View Article and Find Full Text PDFMol Phylogenet Evol
August 2016
Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA.
Poeciliids are a diverse group of small Neotropical fishes, and despite considerable research attention as models in ecology and evolutionary biology, our understanding of their biogeographic and phylogenetic relationships is still limited. We investigated the phylogenetic relationships of South and Central American Poecilia, by examining 2395 base pairs of mitochondrial DNA (ATPase 8/6, COI) and nuclear DNA (S7) for 18 species across six subgenera. Fifty-eight novel sequences were acquired from newly collected specimens and 20 sequences were obtained from previously published material.
View Article and Find Full Text PDFMol Phylogenet Evol
April 2011
Department of Biology, University of California, Riverside, CA 92521, USA.
Members of Poeciliidae are used as model organisms for experimental studies on natural and sexual selection, and comparative studies of life-history evolution. The latter have demonstrated multiple origins of both superfetation and placentotrophy within Poeciliidae. Most recently, placentotrophy has been described in five species of Poecilia (Pamphorichthys), but only one of these (P.
View Article and Find Full Text PDFMol Phylogenet Evol
May 2010
Department of Biology, University of California, Riverside, CA 92521, USA.
Poeciliids are one of the most intensively studied groups within Cyprinodontiformes owing to their use as model organisms for experimental studies on natural and sexual selection, and comparative studies of life-history evolution. Life-history studies have demonstrated multiple origins of placentotrophy and superfetation in poeciliids, including the recent description of placentotrophy in three species of Poecilia (Micropoecilia): P. bifurca, P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!