We demonstrate controlled wavelength conversion on a silicon chip based on four-wave mixing Bragg scattering (FWM-BS). A total conversion efficiency of 5% is achieved with strongly unbalanced pumps and a controlling peak power of 55 mW, while the efficiency is over 15% when using less asymmetric pumps. The numerical simulation agrees with the experimental results. Both time domain and spectral domain noise measurements show as low as 2 dB signal-to-noise ratio (SNR) penalty because of the strong pump noise, two-photon absorption, and free-carrier absorption in silicon. We discuss how the scheme can be used to implement an all-optically controlled high-speed switch.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.41.003651DOI Listing

Publication Analysis

Top Keywords

wavelength conversion
8
conversion silicon
8
silicon chip
8
low control-power
4
control-power wavelength
4
chip demonstrate
4
demonstrate controlled
4
controlled wavelength
4
chip based
4
based four-wave
4

Similar Publications

Preparation of Robust, Antireflective and Superhydrophobic Hierarchical Coatings on PMMA Substrates via Mechanical Locking and Chemical Bonding.

ACS Appl Mater Interfaces

January 2025

Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Antireflection (AR) coatings with mechanical robustness and superhydrophobic properties have wide potential applications in optical, electronic, and automotive fields. However, the fabrication of large-sized, robust, and multifunctional AR coatings on plastic/polymer substrates has been a challenging problem. In this study, we developed a bottom-up approach to produce mechanically robust, enhanced transmittance, and superhydrophobic coatings on poly(methyl methacrylate) (PMMA) substrate.

View Article and Find Full Text PDF

Tunable Multisoliton State Ultrafast Fiber Laser Based on NiSe and Generation of Vector Dual-Wavelength Solitons.

ACS Appl Mater Interfaces

January 2025

College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an 311300, China.

As a member of the chalcogenide family, NiSe exhibits a direct bandgap of 1.74 eV, making it a promising candidate for nonlinear optical devices. However, its potential in the near-infrared region of the telecommunication band has not been fully explored.

View Article and Find Full Text PDF

The contributed absorber design in graphene addition with the displacement of three materials for resonator design in Aluminum (Al), the middle substrate position with Titanium nitride (TiN), and the ground layer deposition by Iron (Fe) respectively. For the absorption validation highlight, the best four absorption wavelengths (µm) of 0.29, 0.

View Article and Find Full Text PDF

Holographically designed aperiodic lattices (ALs) have proven to be an exciting engineering technique for achieving electrically switchable single- or multi-frequency emissions in terahertz (THz) semiconductor lasers. Here, we employ the nonlinear transfer matrix modeling method to investigate multi-wavelength nonlinear (sum- or difference-) frequency generation within an integrated THz (idler) laser cavity that also supports optical (pump and signal) waves. The laser cavity includes an aperiodic lattice, which engineers the idler photon lifetimes and effective refractive indices.

View Article and Find Full Text PDF

As a nonlinear optical phenomenon, upconversion (UC) occurs when two or more low-energy excitation photons are sequentially absorbed and emitted. Upconversion nanomaterials exhibit superior photostability, non-invasiveness, a unique near-infrared anti-Stokes shift, and enhanced tissue penetration capability. However, general upconversion nanomaterials typically utilize visible light (400-700 nm) for excitation, leading to limited tissue penetration, background signal interference, limited excitation efficiency and imaging quality issues due to tissue absorption and scattering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!