Conventional chemotherapy is commonly used for advanced stages of transitional cell carcinoma (TCC) with modest success and high morbidity; however, TCC eventually develops resistance. Muscle invasive bladder cancer (MIBC) is recognized as a lethal disease due to its poor response to traditional chemotherapy. Numerous studies have implicated β-catenin, a critical effector in Wnt-mediated pathway associated with epithelial-mesenchymal transition and cancer stem cell, is involved in TCC progression, and furthermore closely associated with chemo-resistance. In this study, we discovered a novel natural product analogue CYD 6-17 that has a potent inhibitory effect on TCC cells exhibiting drug resistance to various chemotherapeutics, with an IC50 at nM range. Delivery of CYD 6-17 significantly inhibited the tumor growth using xenograft model but without detectable side effects. Mechanistically, it targeted β-catenin gene transcription by decreasing the binding of XBP1 to the promoter region, which appeared to be a new regulatory mechanism for β-catenin gene expression. Clinically, XBP1 expression correlated with the poor overall survival of patients. Overall, this study unveils unique mechanism of β-catenin gene regulation in advanced TCC and also offers a potential rational therapeutic regimen to MIBC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302956PMC
http://dx.doi.org/10.18632/oncotarget.10863DOI Listing

Publication Analysis

Top Keywords

β-catenin gene
12
bladder cancer
8
cyd 6-17
8
mechanism β-catenin
8
β-catenin
5
tcc
5
targeting xbp1-mediated
4
xbp1-mediated β-catenin
4
β-catenin expression
4
expression associated
4

Similar Publications

Camel mastitis especially caused by Staphylococcus aureus (S. aureus), is a major risk to animal health and milk production. The current investigation evaluated the antibiotic susceptibility and virulence factors of S.

View Article and Find Full Text PDF

Root nodule symbiosis is traditionally recognized in the Fabales, Fagales, Cucurbitales, and Rosales orders within the Rosid I clade of angiosperms. However, ambiguous root nodule formation has been reported in Zygophyllaceae and Roystonea regia (Arecaceae), although a detailed analysis has yet to be conducted. We aimed to perform morphological analyses of root structures in these plants and utilize metagenomic techniques to identify and characterize the bacterial populations within the nodule-like structures.

View Article and Find Full Text PDF

A Gram-stain-positive, aerobic, yellow-pigmented, catalase-positive, oxidase-positive, non-motile with no flagella and irregularly rod-shaped, denominated strain YIM 134122, was isolated from a Stereocaulon tomentosum Fr. lichen gathered on Baima Snow Mountain in Diqing Tibetan Autonomous Prefecture, Yunnan Province, China. The novel strain grew at pH 6.

View Article and Find Full Text PDF

Seasonal Changes in the Gut Microbiota of Halyomorpha halys.

Microb Ecol

December 2024

Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy.

The gut microbiome plays an important role in insect evolution and ecology. Bacteria support the host's nutrition and defense and therefore play an important role in the fitness of the host. Halyomorpha halys is one of the most important invasive pest species in the world.

View Article and Find Full Text PDF

Objective(s): Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments.

Materials And Methods: Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!