Leptin-Induced JAK/STAT Signaling and Cancer Growth.

Vaccines (Basel)

Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA.

Published: July 2016

Growth factor and cytokine signaling can influence the development of several cancer types. One of the key players in the development of cancer is the Janus kinas (JAK) signal transducer of activators of transcription (STAT) signaling pathway. The majority of growth factors and cytokine interactions with their membrane-bound receptors trigger JAK-STAT activation. The influential relationship between obesity and cancer is a fact. However, there is a complex sequence of events contributing to the regulation of this mechanism to promote tumor growth, yet to be fully elucidated. The JAK-STAT pathway is influenced by obesity-associated changes that have been shown to impact cancer growth and progression. This intricate process is highly regulated by a vast array of adipokines and cytokines that exert their pleiotropic effects on cancer cells to enhance metastasis to distant target sites. Leptin is a cytokine, or more precise, an adipokine secreted mainly by adipose tissue that requires JAK-STAT activation to exert its biological functions. Leptin is the central regulator of energy balance and appetite. Leptin binding to its receptor OB-R in turn activates JAK-STAT, which induces proliferation, angiogenesis, and anti-apoptotic events in normal cells and malignant cells expressing the receptor. Leptin also induces crosstalk with Notch and IL-1 (NILCO), which involves other angiogenic factors promoting tumor growth. Therefore, the existence of multiple novel classes of therapeutics that target the JAK/STAT pathway has significant clinical implications. Then, the identification of the signaling networks and factors that regulate the obesity-cancer link to which potential pharmacologic interventions can be implemented to inhibit tumor growth and metastasis. In this review, we will discuss the specific relationship between leptin-JAK-STAT signaling and cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5041020PMC
http://dx.doi.org/10.3390/vaccines4030026DOI Listing

Publication Analysis

Top Keywords

tumor growth
12
signaling cancer
8
cancer growth
8
development cancer
8
jak-stat activation
8
cancer
7
growth
7
signaling
5
leptin-induced jak/stat
4
jak/stat signaling
4

Similar Publications

Purpose: Human epidermal growth factor receptor 2 (HER2)-targeted therapies have shown promise in treating -amplified metastatic colorectal cancer (mCRC). Identifying optimal biomarkers for treatment decisions remains challenging. This study explores the potential of artificial intelligence (AI) in predicting treatment responses to trastuzumab plus pertuzumab (TP) in patients with -amplified mCRC from the phase II TRIUMPH trial.

View Article and Find Full Text PDF

Background And Objectives: Breast cancers (BCs) of patients with paraneoplastic neurologic syndromes and anti-Yo antibodies (Yo-PNS) overexpress human epidermal growth factor receptor 2 (HER2) and display genetic alterations and overexpression of the Yo-onconeural antigens. They are infiltrated by an unusual proportion of B cells. We investigated whether these features were also observed in patients with PNS and anti-Ri antibodies (Ri-PNS).

View Article and Find Full Text PDF

Nanosize Non-Viral Gene Therapy Reverses Senescence Reprograming Driven by PBRM1 Deficiency to Suppress iCCA Progression.

Adv Sci (Weinh)

January 2025

Department of Hepatic Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.

Polybromo-1 (PBRM1) serves as a crucial regulator of gene transcription in various tumors, including intrahepatic cholangiocarcinoma (iCCA). However, the exact role of PBRM1 in iCCA and the mechanism by which it regulates downstream target genes remain unclear. This research has revealed that PBRM1 is significantly downregulated in iCCA tissues, and this reduced expression is linked to aggressive clinicopathological features and a poor prognosis.

View Article and Find Full Text PDF

FBXW7 metabolic reprogramming inhibits the development of colon cancer by down-regulating the activity of arginine/mToR pathways.

PLoS One

January 2025

Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China.

FBXW7 is a tumor suppressor gene that regulates metabolism and is associated with the onset and progression of colorectal cancer (CRC)), however, the precise mechanism whereby FBXW7 participates in the metabolic reprogramming of CRC remains unclear. Here, the research aims to reveal the association between the expression of FBXW7 and clinical variables and to investigate the molecular mechanism by which FBXW7 plays a critical role in the development of CRC. The clinical importance of FBXW7 in CRC was determined by immunohistochemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!