Aquaporins (AQPs) play a pivotal role in gut homeostasis since their distribution and function is modulated both in physiological and in pathophysiological conditions. The transport of water and solutes through gut epithelia is essential for osmoregulation and digestive and absorptive functions. This passage is regulated by different AQP isoforms and characterized by their peculiar distribution in the gastrointestinal tract. To date, AQP localization has been identified in the gut and associated organs of several mammalian species by different techniques (immunohistochemical, western blotting, and RT-PCR). The present review describes the modulation of AQP expression, distribution, and function in gut pathophysiology. At the same time, the comparative description of AQP in animal species sheds light on the full range of AQP functions and the screening of their activity as transport modulators, diagnostic biomarkers, and drug targets. Moreover, the phenotype of knockout mice for several AQPs and their compensatory role and the use of specific AQP inhibitors have been also reviewed. The reported data could be useful to design future research in both basic and clinical fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5000611PMC
http://dx.doi.org/10.3390/ijms17081213DOI Listing

Publication Analysis

Top Keywords

distribution function
8
aqp
6
gut
5
aquaporins health
4
health disease
4
disease overview
4
overview focusing
4
focusing gut
4
gut species
4
species aquaporins
4

Similar Publications

Background: Riparian zones are vital transitional habitats that bridge the gap between terrestrial and aquatic ecosystems. They support elevated levels of biodiversity and provide an array of important regulatory and provisioning ecosystem services, of which, many are fundamentally important to human well-being, such as the maintenance of water quality and the mitigation of flood risk along waterways. Increasing anthropogenic pressures resulting from agricultural intensification, industry development and the expansion of infrastructure in tropical regions have led to the widespread degradation of riparian habitats resulting in biodiversity loss and decreased resilience to flooding and erosion.

View Article and Find Full Text PDF

Identifying Safeguards Disabled by Epstein-Barr Virus Infections in Genomes From Patients With Breast Cancer: Chromosomal Bioinformatics Analysis.

JMIRx Med

January 2025

Department of Biochemistry and Medical Genetics, Cancer Center, University of Illinois Chicago, 900 s Ashland, Chicago, IL, 60617, United States, 1 8479124216.

Background: The causes of breast cancer are poorly understood. A potential risk factor is Epstein-Barr virus (EBV), a lifelong infection nearly everyone acquires. EBV-transformed human mammary cells accelerate breast cancer when transplanted into immunosuppressed mice, but the virus can disappear as malignant cells reproduce.

View Article and Find Full Text PDF

Climate change policies are driving the oil and gas industry to explore CO injection for carbon dioxide storage in reservoirs. In the United States, a substantial portion of oil production relies on CO-enhanced-oil-recovery (CO-EOR), demonstrating a growing interest in using CO to address various production challenges like condensate mitigation, pressure maintenance, and enhancing productivity in tight reservoirs. CO injection introduces gases like natural gas and N, either pre-existing or as impurities in the injected CO gas.

View Article and Find Full Text PDF

Chromosome distribution of four LTR retrotransposons and 18 S rDNA in coffea eugenioides.

Sci Rep

January 2025

Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Universidade Federal de Viçosa. ZIP, 36.570-900, Viçosa - MG, Brazil.

Repetitive sequences are recognized for their roles in plant genome organization and function. Mobile elements are notable repeatome sequences due to their intrinsic mutagenic potential, which is related to the origin of adaptive novelties. Understanding the genomic organization and dynamics of the repeatome is fundamental to enlighten their role in plant genome evolution.

View Article and Find Full Text PDF

An Integrative lifecycle design approach based on carbon intensity for renewable-battery-consumer energy systems.

Commun Eng

January 2025

Sustainable Energy and Environment Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, Guangdong, China.

Driven by sustainable development goals and carbon neutrality worldwide, demands for both renewable energy and storage systems are constantly increasing. However, the lack of an appropriate approach without considering renewable intermittence and demand stochasticity will lead to capacity oversizing or undersizing. In this study, an optimal design approach is proposed for integrated photovoltaic-battery-consumer energy systems in the form of a m-kWp-kWh relationship in both centralized and distributed formats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!