The high level of dehydroascorbic acid (DHA) in the lenticular tissue is an important risk factor for the development of age-related cataracts. In this study, the effects of DHA on structure and function of lens crystallins were studied in the presence of carnosine using gel mobility shift assay, different spectroscopic techniques, and lens culture analysis. The DHA-induced unfolding and aggregation of lens proteins were largely prevented by this endogenous dipeptide. The ability of carnosine to preserve native protein structure upon exposure to DHA suggests the essential role of this dipeptide in prevention of the senile cataract development. Although the DHA-modified α-crystallin was characterized by altered chaperone activity, functionality of this protein was significantly restored in the presence of carnosine. The increased proteolytic instability of DHA-modified lens proteins was also attenuated in the presence of carnosine. Furthermore, the assessment of lens culture suggested that DHA can induce significant lens opacity which can be prevented by carnosine. These observations can be explained by the pleiotropic functions of this endogenous and pharmaceutical compound, notably by its anti-glycation and anti-aggregation properties. In summary, our study suggests that carnosine may have therapeutic potential in preventing senile cataracts linked with the increased lenticular DHA generation, particularly under pathological conditions associated with the oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2016.1194230DOI Listing

Publication Analysis

Top Keywords

presence carnosine
12
carnosine
8
lens crystallins
8
pleiotropic functions
8
lens culture
8
lens proteins
8
lens
7
dha
5
protective effects
4
effects carnosine
4

Similar Publications

Background: Tubular injury triggered by hyperglycemia is an important pathological characteristic in diabetic nephropathy (DN). Accumulated advanced glycation end products and their precursor methylglyoxal (MGO), contribute to the development of DN. Carnosine has been shown to prevent the development of DN but the underlying mechanism still needs to be studied in depth.

View Article and Find Full Text PDF

Introduction: Hyperuricemia (HUA) refers to the presence of excess uric acid (UA) in the blood, which increases the risk of chronic kidney disease and gout. Probiotics have the potential to alleviate HUA.

Methods: This study established a hyperuricemia model using (), and studied the anti-hyperuricemia activity and potential mechanisms of BC99 () at different concentrations (10 CFU/mL BC99, 10 CFU/mL BC99).

View Article and Find Full Text PDF

Dipeptides in CSF and plasma: diagnostic and therapeutic potential in neurological diseases.

Amino Acids

December 2024

Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.

Dipeptides (DPs), composed of two amino acids (AAs), hold significant therapeutic potential but remain underexplored. Given the crucial role of AAs in central nervous system (CNS) function, this study investigated the presence of DPs in cerebrospinal fluid (CSF) and their correlation with corresponding AAs, potentially indicating their role as AA donors. Plasma and CSF samples were collected from 43 children with neurological or metabolic conditions of unknown origin, including 23 with epilepsy.

View Article and Find Full Text PDF

-Lactoyl-phenylalanine (Lac-Phe) is a metabolite known for its appetite-suppressing and antiobesity properties, while phenyllactic acid (PLA) is recognized for its antibacterial activity. Both metabolites are derived from phenylalanine and lactic acid metabolism through peptidase and dehydrogenase activities. The aim of this study was to investigate the production of Lac-Phe and PLA in kimchi, focusing on the role of lactic acid bacteria (LAB).

View Article and Find Full Text PDF

Although carnosine (β-Ala-L-His) is one of physiological protectants against damages caused by reactive oxygen species (ROS), its reactivity against singlet oxygen (O), an ROS, is still unclear at the molecular level. Theoretically, the reaction consists of two steps: i) oxygenation of the His side chain to form an electrophilic endoperoxide and ii) nucleophilic addition to the endoperoxide. In this study, the end product of O-mediated carnosine oxidation was evaluated using 2D-NMR and other analytical methods both in the presence and absence of external nucleophiles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!