While numerous studies both in laboratory and field have showed short term impacts of biochar on soil microbial community, there have been comparatively few reports addressing its long term impacts particular in field condition. This study investigated the changes of microbial community activity and composition in a rice paddy four years after a single incorporation of biochar at 20 and 40t/ha. The results indicated that biochar amendment after four years increased soil pH, soil organic C (SOC), total N and C/N ratio and decreased bulk density, particularly for the 40t/ha treatment compared to the control (0t/ha). Though no significant difference was observed in soil basal respiration, biochar amendment increased soil microbial biomass C and resulted in a significantly lower metabolic quotient. Besides, dehydrogenase and β-glucosidase activities were significantly decreased under biochar amendment relative to the control. The results of Illumina Miseq sequencing showed that biochar increased α-diversity of bacteria but decreased that of fungi and changed both bacterial and fungal community structures significantly. Biochar did not change the relative abundances of majority of bacteria at phylum level with the exception of a significant reduction of Actinobacteria, but significantly changed most of bacterial groups at genus level, particularly at 40t/ha. In contrast, biochar significantly decreased the relative abundances of Ascomycota and Basidiomycota by 11% and 66% and increased the relative abundances of Zygomycota by 147% at 40t/ha compared to the non-amended soil. Redundancy analysis (RDA) indicated that biochar induced changes in soil chemical properties, such as pH, SOC and C/N, were important factors driving community composition shifts. This study suggested that biochar amendment may increase microbial C use efficiency and reduce some microorganisms that are capable of decomposing more recalcitrant soil C, which may help stabilization of soil organic matter in paddy soil in long term.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2016.07.135 | DOI Listing |
Plants (Basel)
December 2024
Department of Agricultural Microbiology, Agriculture and Biology Research Institute, National Research Centre, 33 EI Buhouth St., Dokki, Cairo 12622, Egypt.
Excessive irrigation of saline-alkaline soils with Cd-contaminated wastewater has resulted in deterioration of both soil and plant quality. To an investigate this, a study was conducted to explore the effects of biochar (applied at 10 t ha), PGPRs ( (USDA 110) + at 1:1 ratio), and Si-NPs (25 mg L) on soybean plants grown in saline-alkali soil irrigated with wastewater. The results showed that the trio-combination of biochar with PGPRs, (as soil amendments) and Si-NPs (as foliar spraying), was more effective than individual or coupled applications in reducing Cd bioavailability in the soil, minimizing its absorption, translocation and bioconcentration in soybean tissues.
View Article and Find Full Text PDFLife (Basel)
December 2024
Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, Harbin University, Harbin 150086, China.
Biochar has gained considerable attention as a sustainable soil amendment due to its potential to enhance soil fertility and mitigate nitrogen (N) losses. This study aimed to investigate the effects of biochar application on the abundance of key N-cycling genes in Mollisol and alkaline soils, focusing on nitrification (AOA, AOB, and ) and denitrification (, , and ) processes. The experiment was conducted using soybean rhizosphere soil.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China. Electronic address:
Heavy metal (HM) contamination poses significant global environmental threats, impacting ecosystems, public health, and sustainable development. Fungi, as eco-friendly alternatives to chemical treatments, have the potential to reduce HM bioavailability in contaminated soils while promoting plant growth. However, current fungal remediation methods face limitations in efficiency, long-term effectiveness, and the ability to address combined contamination, particularly with naturally occurring strains.
View Article and Find Full Text PDFBiochar
January 2025
Institute of Agriculture & Applied Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea.
Biochar is a carbon-rich material produced through the pyrolysis of various feedstocks. It can be further modified to enhance its properties and is referred to as modified biochar (MB). The research interest in MB application in soil has been on the surge over the past decade.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol, 3036, Cyprus.
Savory (Satureja rechingeri L.) is one of Iran's most important medicinal plants, having low irrigation needs, and thus is considered one of the most valuable plants for cultivation in arid and semi-arid regions, especially under drought conditions. The current research was carried out to develop a genetic algorithm-based artificial neural network (ΑΝΝ) model able of simulating the levels of antioxidants in savory when using soil amendments [biochar (BC) and superabsorbent (SA)] under drought.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!