Are regions of the lumbar multifidus differentially activated during walking at varied speed and inclination?

J Electromyogr Kinesiol

School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK. Electronic address:

Published: October 2016

Purpose: Lumbar multifidus is a complex muscle with multi-fascicular morphology shown to be differentially controlled in healthy individuals during sagittal-plane motion. The normal behaviour of multifidus muscle regions during walking has only received modest attention in the literature. This study aimed to determine activation patterns for deep and superficial multifidus in young adults during walking at different speeds and inclination.

Methods: This observational cohort study evaluated ten healthy volunteers in their twenties (three women, seven men) as they walked on a treadmill in eight conditions; at 2km/h and 4km/h, each at 0, 1, 5, and 10% inclination. Intramuscular EMG was recorded from the deep and superficial multifidus unilaterally at L5. Activity was characterized by: amplitude of the peak of activation, position of peak within the gait cycle (0-100%), and duration relative to the full gait cycle.

Results: Across all conditions superficial multifidus showed higher normalised EMG amplitude (p<0.01); superficial multifidus peak amplitude was 232±115% higher when walking at 4km/h/10%, versus only 172±77% higher for deeper region (p<0.01). The percentage of the gait cycle where peak EMG amplitude was detected did not differ between regions (49±13%). Deep multifidus duration of activation was longer when walking at the faster vs slower speed at all inclinations (p<0.01), which was not evident for superficial multifidus (p<0.05). Thus, a significantly longer activation of deep multifidus was observed compared to superficial multifidus when walking at 4km/h (p<0.05).

Conclusions: Differential activation within lumbar multifidus was shown in young adults during walking. The prolonged, more tonic activation of deep relative to superficial regions of multifidus during gait supports a postural function of deeper fibres.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jelekin.2016.07.006DOI Listing

Publication Analysis

Top Keywords

superficial multifidus
12
lumbar multifidus
8
deep superficial
8
multifidus
6
regions lumbar
4
multifidus differentially
4
differentially activated
4
activated walking
4
walking varied
4
varied speed
4

Similar Publications

Central projections of nociceptive input originating from the low back and limb muscle in rats.

Sci Rep

January 2025

Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, 950-3198, Japan.

Since clinical features of chronic muscle pain originating from the low back and limbs are different (higher prevalence and broader/duller sensation of low back muscle pain than limb muscle pain), spinal and/or supraspinal projection of nociceptive information could differ between the two muscles. We tested this hypothesis using c-Fos immunohistochemistry combined with retrograde-labeling of dorsal horn (DH) neurons projecting to ventrolateral periaqueductal grey (vlPAG) or ventral posterolateral nucleus of the thalamus (VPL) by fluorogold (FG) injections into the vlPAG or VPL. C-Fos expression in the DH was induced by injecting 5% formalin into the multifidus (MF, low back) or gastrocnemius-soleus (GS, limb) muscle.

View Article and Find Full Text PDF

The role of paraspinal muscle degeneration in cervical spondylosis.

Eur Spine J

January 2025

Department of Tuina and Spinal Orthopaedic in Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China.

Purpose: To explore the relationship between paraspinal muscle degeneration and cervical spondylosis through cervical spine MRI and lateral X-ray.

Methods: A retrospective study included 83 cervical spondylosis patients as the experimental group, consisting of 28 axial joint pain (Group A), 29 cervical radiculopathy (Group B), and 26 myelopathy (Group C), as well as 29 healthy individuals as the control group (Group D). The cross-sectional area (CSA) of paraspinal muscles at the C3-4, C4-5, and C5-6 segments was measured, including the deep extensor area (DEA), deep flexor area (DFA), and superficial extensor area (SEA).

View Article and Find Full Text PDF

Far Posterior Approach for Rib Fracture Fixation: Surgical Technique and Tips.

JBJS Essent Surg Tech

December 2024

Department of Orthopedics, OhioHealth Health System, Columbus, Ohio.

Article Synopsis
  • The video article discusses the far posterior or paraspinal approach for treating posterior rib fractures, which enhances intraoperative visibility and minimizes muscle damage.
  • This method helps preserve periscapular strength, achieving up to 95% recovery six months after surgery through muscle-sparing techniques.
  • The surgical process involves precise skin incision and careful dissection of muscles like the trapezius, rhomboids, and latissimus dorsi to allow for effective access and treatment of the fractures without significant tissue loss.
View Article and Find Full Text PDF

New insights into the impact of bed rest on lumbopelvic muscles: a computer-vision model approach to measure fat fraction changes.

J Appl Physiol (1985)

January 2025

Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.

Space agencies plan crewed missions to the Moon and Mars. However, microgravity-induced lumbopelvic deconditioning, characterized by an increased fat fraction (FF) due to reduced physical activity, poses a significant challenge to spine health. This study investigates the spatial distribution of FF in the lumbopelvic muscles to identify the most affected regions by deconditioning, utilizing a computer-vision model and a tile-based approach to assess FF changes.

View Article and Find Full Text PDF

Objectives: Elevated lumbar multifidus stiffness has been observed in populations with chronic low back pain (LBP). However, the modulation of deep (DLM) and superficial (SLM) lumbar multifidus stiffness, considering their distinct structural characteristics and functions, remains unaddressed, especially in athletes. This study aimed to compare differences in DLM and SLM stiffness in professional athletes from different sports with and without chronic LBP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!