Melatonin may have beneficial effects when used in oocyte maturation and embryo development culture. The effect of melatonin during IVM on meiosis resumption and progression in bovine oocytes and on expression of antioxidant enzymes, nuclear fragmentation and free radicals, as well as on embryo development were assessed. Cumulus-oocyte complexes were matured in vitro with melatonin (10(-9) and 10(-6) M), FSH (positive control), or without hormones (negative control) in defined medium. Maturation rates were evaluated at 6, 12, 18, and 24 hours. Transcripts for antioxidant enzymes (CuZnSOD, MnSOD, and glutathione peroxidase 4 (GPX4)) in oocytes and cumulus cells, nuclear fragmentation in cumulus cells (TUNEL) and reactive oxygen species levels in oocytes (carboxy-H2 difluorofluorescein diacetate) were determined at 24 hours IVM. Effect of treatments on embryo development was determined after in vitro fertilization and culture. At 12 hours, meiosis resumption rates in FSH and melatonin-treated groups were similar (69.6%-81.8%, P > 0.05). At 24 hours, most oocytes were in metaphase II, with FSH showing highest rates (90.0%, P < 0.05) compared with the other groups (51.6%-69.1%, P > 0.05). In cumulus cells, MnSOD expression was higher in FSH group (P < 0.05) whereas Cu,ZnSOD transcripts were more abundant in melatonin group (10(-6)M; P < 0.05). Nuclear fragmentation in cumulus cells was highest in controls (37.4%/10,000 cells; P < 0.05) and lower in FSH and 10(-6)M melatonin (29.4% and 25.6%/10,000 cells, respectively). Reactive oxygen species levels were lower in oocytes matured with 10(-6)M melatonin than in control and FSH groups (P < 0.05). Embryo development from oocytes matured only with melatonin was similar to those matured in complete medium (P > 0.05). In conclusion, although melatonin during IVM in a defined medium does not stimulate nuclear maturation progression it does stimulate meiosis resumption and such treated oocytes support subsequent embryo development. Melatonin also shows cytoprotective effects on cumulus-oocyte complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2016.05.026 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.
Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104.
Dorsal closure is a process that occurs during embryogenesis of . During dorsal closure, the amnioserosa (AS), a one-cell thick epithelial tissue that fills the dorsal opening, shrinks as the lateral epidermis sheets converge and eventually merge. During this process, both shape index and aspect ratio of amnioserosa cells increase markedly.
View Article and Find Full Text PDFPLoS One
January 2025
Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
Preeclampsia is characterized by insufficient invasion of extravillous trophoblasts and is a consequence of failed adaption of extravillous trophoblasts to changes in the intrauterine environment developing embryo. Specific miRNAs are implicated in the development of preeclampsia (PE). miR-455-5p is present at low levels in PE but its role is not known.
View Article and Find Full Text PDFHum Reprod
January 2025
IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III-Paul Sabatier (UPS), Toulouse, France.
Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?
Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.
What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!