Stenosis of the aortic valve gives rise to more complex blood flows with increased velocities. The angle-independent vector flow ultrasound technique transverse oscillation was employed intra-operatively on the ascending aorta of (I) 20 patients with a healthy aortic valve and 20 patients with aortic stenosis before (IIa) and after (IIb) valve replacement. The results indicate that aortic stenosis increased flow complexity (p < 0.0001), induced systolic backflow (p < 0.003) and reduced systolic jet width (p < 0.0001). After valve replacement, the systolic backflow and jet width were normalized (p < 0.52 and p < 0.22), but flow complexity was not (p < 0.0001). Flow complexity (p < 0.0001), systolic jet width (p < 0.0001) and systolic backflow (p < 0.001) were associated with peak systolic velocity. The study found that aortic stenosis changes blood flow in the ascending aorta and valve replacement corrects some of these changes. Transverse oscillation may be useful for assessment of aortic stenosis and optimization of valve surgery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultrasmedbio.2016.06.009 | DOI Listing |
Methods Enzymol
January 2025
Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States; Department of Biomedical Engineering, Duke University, Durham, NC, United States. Electronic address:
RNAs are central mediators of genetic information flow and gene regulation that underlie diverse cell types and cell states across species. Thus, methods that can sense and respond to RNA profiles in living cells will have broad applications in biology and medicine. CellREADR - Cell access through RNA sensing by Endogenous ADAR (adenosine deaminase acting on RNA), is a programmable RNA sensor-actuator technology that couples the detection of a cell-defining RNA to the translation of an effector protein to monitor and manipulate the cell.
View Article and Find Full Text PDFInt J Biochem Cell Biol
January 2025
Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China. Electronic address:
Background: Heart failure is linked to increased hospitalization and mortality. Mitochondrial permeability transition-driven necrosis is associated with cardiovascular diseases, but its role in heart failure is unclear. This study aimed to identify and validate genes related to mitochondrial permeability transition-driven necrosis in heart failure, potentially leading to new drug targets and signaling pathways.
View Article and Find Full Text PDFRSC Adv
January 2025
LAQV and REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica Portugal
Despite significant strides in improving cancer survival rates, the global cancer burden remains substantial, with an anticipated rise in new cases. Immune checkpoints, key regulators of immune responses, play a crucial role in cancer evasion mechanisms. The discovery of immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 has revolutionized cancer treatment, with monoclonal antibodies (mAbs) becoming widely prescribed.
View Article and Find Full Text PDFBiomol Biomed
January 2025
Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Translational Research Team, Surginex Co., Republic of Korea; Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
HEK293T cells are extensively utilized for therapeutic protein production due to their human origin, which enables accurate post-translational modifications. This study aimed to enhance membrane protein production in HEK293T cells by knocking out the ATF4 gene using CRISPR-Cas9 technology. The ATF4 gene was edited by infecting HEK293T cells with a lentivirus carrying optimized single-guide RNA (ATF4-KO-3) and Cas9 genes.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China.
Angiostrongylus cantonensis (AC) is the leading cause of eosinophilic meningoencephalitis worldwide. The neuroimmune interactions between peripheral and central immune systems in angiostrongyliasis remain unclear. In this study, significant infiltration of eosinophils, myeloid cells, macrophages, neutrophils, and Ly6C monocytes is observed in the brains of AC-infected mice, with macrophages being the most abundant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!