Background: The aim of this study was to investigate the potential of dynamic O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) PET for differentiating local recurrent brain metastasis from radiation injury after radiotherapy since contrast-enhanced MRI often remains inconclusive.

Methods: Sixty-two patients (mean age, 55 ± 11 y) with single or multiple contrast-enhancing brain lesions (n = 76) on MRI after radiotherapy of brain metastases (predominantly stereotactic radiosurgery) were investigated with dynamic 18F-FET PET. Maximum and mean tumor-to-brain ratios (TBRmax, TBRmean) of 18F-FET uptake were determined (20-40 min postinjection) as well as tracer uptake kinetics (ie, time-to-peak and slope of time-activity curves). Diagnoses were confirmed histologically (34%; 26 lesions in 25 patients) or by clinical follow-up (66%; 50 lesions in 37 patients). Diagnostic accuracies of PET parameters for the correct identification of recurrent brain metastasis were evaluated by receiver-operating-characteristic analyses or the chi-square test.

Results: TBRs were significantly higher in recurrent metastases (n = 36) than in radiation injuries (n = 40) (TBRmax 3.3 ± 1.0 vs 2.2 ± 0.4, P < .001; TBRmean 2.2 ± 0.4 vs 1.7 ± 0.3, P < .001). The highest accuracy (88%) for diagnosing local recurrent metastasis could be obtained with TBRs in combination with the slope of time-activity curves (P < .001).

Conclusions: The results of this study confirm previous preliminary observations that the combined evaluation of the TBRs of 18F-FET uptake and the slope of time-activity curves can differentiate local brain metastasis recurrence from radiation-induced changes with high accuracy. 18F-FET PET may thus contribute significantly to the management of patients with brain metastases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5463967PMC
http://dx.doi.org/10.1093/neuonc/now149DOI Listing

Publication Analysis

Top Keywords

brain metastasis
16
18f-fet pet
12
slope time-activity
12
time-activity curves
12
metastasis recurrence
8
radiation injury
8
injury radiotherapy
8
local recurrent
8
recurrent brain
8
brain metastases
8

Similar Publications

Introduction: Stage IV non-small cell lung carcinoma (NSCLC) with oligometastases is potentially curable by radical treatment. This study aimed to evaluate the efficacy and safety of chemoradiotherapy (CRT) for thoracic disease, including the primary lesion and lymph node metastases, combined with local consolidative therapy (LCT) for oligometastases.

Methods: This was a multicenter Phase II trial for patients with Stage IV NSCLC with oligometastases for whom CRT for thoracic disease was feasible.

View Article and Find Full Text PDF

Background: Brain metastases (BMs) are common in human epidermal growth factor receptor 2 (HER2)-positive advanced breast cancer, increasing morbidity and mortality. Systemic therapy for BMs can be effective, with the triple combination of trastuzumab, capecitabine, and tucatinib being a potential standard. More recently, intracranial activity of antibody-drug conjugates has been reported, but the size of individual studies has been small.

View Article and Find Full Text PDF

Background: The SEER Registry contains U.S. cancer statistics.

View Article and Find Full Text PDF

In recent years, it has been increasingly recognized that tumor growth relies not only on support from the surrounding microenvironment but also on the tumors capacity to adapt to - and actively manipulate - its niche. While targeting angiogenesis and modulating the local immune environment have been explored as therapeutic approaches, these strategies have yet to yield effective treatments for brain tumors and remain under refinement. More recently, the nervous system itself has been explored as a critical environmental support for cancer, with extensive neuro-tumoral interactions observed both intracranially and in extracranial sites containing neural components.

View Article and Find Full Text PDF

Glioma is characterized by high heterogeneity and poor prognosis. Attempts have been made to understand its diversity in both genetic expressions and radiomic characteristics, while few integrated the two omics in predicting survival of glioma. This study was intended to investigate the connection between glioma imaging and genome, and examine its predictive value in glioma mortality risk and tumor immune microenvironment (TIME).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!