While the sources of nutrients to urban stormwater are many, the primary contributor is often organic detritus, especially in areas with dense overhead tree canopy. One way to remove organic detritus before it becomes entrained in runoff is to implement a city-wide leaf collection and street cleaning program. Improving our knowledge of the potential reduction of nutrients to stormwater through removal of leaves and other organic detritus on streets could help tailor more targeted municipal leaf collection programs. This study characterized an upper ideal limit in reductions of total and dissolved forms of phosphorus and nitrogen in stormwater through implementation of a municipal leaf collection and street cleaning program in Madison, WI, USA. Additional measures were taken to remove leaf litter from street surfaces prior to precipitation events. Loads of total and dissolved phosphorus were reduced by 84 and 83% (p<0.05), and total and dissolved nitrogen by 74 and 71% (p<0.05) with an active leaf removal program. Without leaf removal, 56% of the annual total phosphorus yield (winter excluded) was due to leaf litter in the fall compared to 16% with leaf removal. Despite significant reductions in load, total nitrogen showed only minor changes in fall yields without and with leaf removal at 19 and 16%, respectively. The majority of nutrient concentrations were in the dissolved fraction making source control through leaf removal one of the few treatment options available to environmental managers when reducing the amount of dissolved nutrients in stormwater runoff. Subsequently, the efficiency, frequency, and timing of leaf removal and street cleaning are the primary factors to consider when developing a leaf management program.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2016.07.003DOI Listing

Publication Analysis

Top Keywords

organic detritus
12
leaf collection
12
urban stormwater
8
collection street
8
street cleaning
8
cleaning program
8
municipal leaf
8
total dissolved
8
evaluation leaf
4
leaf removal
4

Similar Publications

Interactive effects of salinity, redox, and colloids on greenhouse gas production and carbon mobility in coastal wetland soils.

PLoS One

January 2025

Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America.

Coastal wetlands, including freshwater systems near large lakes, rapidly bury carbon, but less is known about how they transport carbon either to marine and lake environments or to the atmosphere as greenhouse gases (GHGs) such as carbon dioxide and methane. This study examines how GHG production and organic matter (OM) mobility in coastal wetland soils vary with the availability of oxygen and other terminal electron acceptors. We also evaluated how OM and redox-sensitive species varied across different size fractions: particulates (0.

View Article and Find Full Text PDF

Depth heterogeneity of lignin-degrading microbiome and organic carbon processing in mangrove sediments.

NPJ Biofilms Microbiomes

January 2025

School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China.

Mangrove ecosystems are globally recognized for their blue carbon (C) sequestration capacity. Lignocellulosic detritus constitutes the primary C input to mangrove sediments, but the microbial processes involved in its bioprocessing remain unclear. Using lignocellulosic analysis and metagenomic sequencing across five 100-cm sediment cores, we found a high proportion of lignin (95.

View Article and Find Full Text PDF

Key bacteria decomposing animal and plant detritus in deep sea revealed via long-term incubation in different oceanic areas.

ISME Commun

January 2024

Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources of PR China, 178 Daxue Road, Siming District, Xiamen City, Fujian Province 361005, PR China.

Transport of organic matter (OM) occurs widely in the form of animal and plant detritus in global oceans, playing a crucial role in global carbon cycling. While wood- and whale-falls have been extensively studied, the process of OM remineralization by microorganisms remains poorly understood particularly in pelagic regions on a global scale. Here, enrichment experiments with animal tissue or plant detritus were carried out in three deep seas for 4-12 months using the deep-sea incubators.

View Article and Find Full Text PDF

Microplastics inhibit the decomposition of soil organic matter by adult darkling beetles (Coleoptera: Tenebrionidae).

Environ Entomol

December 2024

Department of Biology, and the Program in Environmental Science, Whittier College, Whittier, CA, USA.

Microplastics (MPs) are a growing problem worldwide. Soils are long-term storage sinks of MPs because of the many pathways they enter the soil and their long degradation period. Knowing how MPs influence soil organisms, the effects of organisms on the fate of MPs, and what this means for soil additions, losses, transformations, and translocations is paramount.

View Article and Find Full Text PDF

Soft plastic fishing lures and fishing nets significantly influence the decomposition of Ecklonia radiata.

Mar Pollut Bull

December 2024

National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW 2450, Australia.

Discarded or lost fishing gear from recreational or commercial fishers significantly contributes to global marine pollution. This debris accumulates with organic detritus on the seafloor, potentially impacting detrital dynamics. We used an outdoor mesocosm experiment to test hypotheses that soft plastic lures with nylon lines and commercial-grade fish netting influence the decomposition of Ecklonia radiata detritus in current and future ocean temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!