Patients undergoing intensive chemotherapy for acute myeloid leukemia are at high risk for bacterial infections during therapy-related neutropenia. However, the use of specific antibiotic regimens for prophylaxis in afebrile neutropenic acute myeloid leukemia patients is controversial. We report a retrospective evaluation of 172 acute myeloid leukemia patients who received 322 courses of myelosuppressive chemotherapy and had an expected duration of neutropenia of more than seven days. The patients were allocated to antibiotic prophylaxis groups and treated with colistin or ciprofloxacin through 2 different hematologic services at our hospital, as available. The infection rate was reduced from 88.6% to 74.2% through antibiotic prophylaxis (vs without prophylaxis; P=0.04). A comparison of both antibiotic drugs revealed a trend towards fewer infections associated with ciprofloxacin prophylaxis (69.2% vs 79.5% in the colistin group; P=0.07), as determined by univariate analysis. This result was confirmed through multivariate analysis (OR: 0.475, 95%CI: 0.236-0.958; P=0.041). The prophylactic agents did not differ with regard to the microbiological findings (P=0.6, not significant). Of note, the use of ciprofloxacin was significantly associated with an increased rate of infections with pathogens that are resistant to the antibiotic used for prophylaxis (79.5% vs 9.5% in the colistin group; P<0.0001). The risk factors for higher infection rates were the presence of a central venous catheter (P<0.0001), mucositis grade III/IV (P=0.0039), and induction/relapse courses (vs consolidation; P<0.0001). In conclusion, ciprofloxacin prophylaxis appears to be of particular benefit during induction and relapse chemotherapy for acute myeloid leukemia. To prevent and control drug resistance, it may be safely replaced by colistin during consolidation cycles of acute myeloid leukemia therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5046650 | PMC |
http://dx.doi.org/10.3324/haematol.2016.147934 | DOI Listing |
Mol Biol Rep
January 2025
Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.
View Article and Find Full Text PDFVenetoclax plus azacitidine represents a key advance for older, unfit patients with acute myeloid leukemia (AML). The chemotherapy and venetoclax in elderly AML trial (CAVEAT) was first to combine venetoclax with intensive chemotherapy in newly diagnosed patients ≥65 years. In this final analysis, 85 patients (median age 71 years) were followed for a median of 41.
View Article and Find Full Text PDFZhongguo Dang Dai Er Ke Za Zhi
January 2025
Department of Children's Hematology and Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
Objectives: To investigate the clinical characteristics and prognosis of acute erythroleukemia (AEL) in children.
Methods: A retrospective analysis was conducted on the clinical data, treatment, and prognosis of 8 children with AEL treated at the First Affiliated Hospital of Zhengzhou University from January 2013 to December 2023.
Results: Among the 7 patients with complete bone marrow morphological analysis, 4 exhibited trilineage dysplasia, with a 100% incidence of erythroid dysplasia (7/7), a 71% incidence of myeloid dysplasia (5/7), and a 57% incidence of megakaryocytic dysplasia (4/7).
Clin Epigenetics
January 2025
School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia.
Background: Hypomethylating agents (HMA), such as azacytidine (AZA) and decitabine (DAC), are epigenetic therapies used to treat some patients with acute myeloid leukaemia (AML) and myelodysplastic syndrome. HMAs act in a replication-dependent manner to remove DNA methylation from the genome. However, AML cells targeted by HMA therapy are often quiescent within the bone marrow, where oxygen levels are low.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Hematology, The Qinghai Provincial People's Hospital, Xining, 810007, People's Republic of China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!