Endometriosis, defined by the presence of ectopic endometrial lesions, is a common disease in reproductive-age women that profoundly affects patients' quality of life. Various pathogenic models have been proposed, but the origin of endometriosis remains elusive. In this article, we propose that the mesothelial barrier, which protects the underlying stroma from endometrial transplants present in retrograde menstrual fluid, can be compromised by activation of the epithelial to mesenchymal transition (EMT) repair mechanism that lead to temporary loss of barrier integrity. Absent of the mesothelial barrier, endometrial cells can more readily adhere to the underlying peritoneal stroma and establish endometrial lesions. The hypothesis is based on the clinical and experimental observations that correlate the location of endometrial lesions with areas of mesothelial damage, together with genetic evidence that 4 genes associated with endometriosis are direct regulators of the actin-cytoskeleton, which coordinates mesothelial barrier integrity. It supports past observations that implicate the peritoneum in the pathogenesis of endometriosis and unifies previously disparate theories that endometriosis may be triggered by infection, mechanical damage, and inflammation since each of these mechanisms can induce EMT in the mesothelium. If the hypothesis is correct, inhibition of EMT in the mesothelial barrier provides a novel paradigm for the prevention and treatment of endometriosis.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1933719116660847DOI Listing

Publication Analysis

Top Keywords

mesothelial barrier
20
endometrial lesions
12
endometriosis
8
pathogenesis endometriosis
8
barrier integrity
8
mesothelial
6
barrier
6
endometrial
5
genes linked
4
linked endometriosis
4

Similar Publications

Hypersensitive intercellular responses of endometrial stromal cells drive invasion in endometriosis.

Elife

December 2024

Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, United States.

Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal.

View Article and Find Full Text PDF

Peritoneal dialysis (PD) is an increasingly needed, life-maintaining kidney replacement therapy; efficient solute transport is critical for patient outcome. While the role of peritoneal perfusion on solute transport in PD has been described, the role of cellular barriers is uncertain, the mesothelium has been considered irrelevant. We calculated peritoneal blood microvascular endothelial (BESA) to mesothelial surface area (MSA) ratio in human peritonea in health, chronic kidney disease, and on PD, and performed molecular transport related gene profiling and single molecule localization microscopy in two mesothelial (MC) and two endothelial cell lines (EC).

View Article and Find Full Text PDF

Receptive window might be shorter in patients with endometriosis and lesions cyclically prepare for implantation.

F S Sci

December 2024

Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia. Electronic address:

Objective: To investigate whether endometrial receptivity is affected in patients with endometriosis using podocalyxin (PCX) as a functional biomarker and to study how endometriotic lesions display PCX and the potential pathological implications.

Design: We have previously reported that PCX, an anti-adhesion glycoprotein and barrier protector, is dynamically regulated in the endometrium and acts as a key negative regulator of epithelial receptivity. Early in the cycle both luminal epithelium (LE, lining the endometrial surface) and glandular epithelium (GE, residing within the tissue) strongly express PCX, but in the receptive window, PCX is selectively downregulated in LE, switching the endometrial surface to an adhesive state for embryo attachment/implantation; meanwhile, PCX expression is maintained in GE until postreceptivity.

View Article and Find Full Text PDF

The administration of medicinal drugs orally or systemically limits the treatment of specific central nervous system (CNS) illnesses, such as certain types of brain cancers. These methods can lead to severe adverse reactions and inadequate transport of drugs to the brain, resulting in limited effectiveness. The CNS homeostasis is maintained by various barriers within the brain, such as the endothelial, epithelial, mesothelial, and glial barriers, which strictly control the movement of chemicals, solutes, and immune cells.

View Article and Find Full Text PDF

Objective: To study the role of the mesothelial cells in early endometriosis lesion formation by assessing in vitro cell-to-cell communication and invasion of endometrial cells across a mesothelial cell monolayer, with both cell types derived from both patients with endometriosis and control patients.

Design: Laboratory-based experimental study.

Setting: University hospital and laboratory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!