Fragment engineering of monoclonal antibodies (mAbs) has emerged as an excellent paradigm to develop highly efficient therapeutic and/or diagnostic agents. Engineered mAb fragments can be economically produced in bacterial systems using recombinant DNA technologies. In this work, we established recombinant production in Escherichia coli for monovalent antigen-binding fragment (Fab) adopted from a clinically used anticancer mAB drug cetuximab targeting epidermal growth factor receptor (EGFR). Recombinant DNA constructs were designed to express both polypeptide chains comprising Fab in a single vector and to secrete them to bacterial periplasmic space for efficient folding. Particularly, a C-terminal engineering to confer an interchain disulfide bond appeared to be able to enhance its heterodimeric integrity and EGFR-binding activity. Conformational relevance of the purified final product was validated by mass spectrometry and crystal structure at 1.9 Å resolution. Finally, our recombinant cetuximab-Fab was found to have strong binding affinity to EGFR overexpressed in human squamous carcinoma model (A431) cells. Its binding ability was comparable to that of cetuximab. Its EGFR-binding affinity was estimated at approximately 0.7 nM of Kd in vitro, which was quite stronger than the binding affinity of natural ligand EGF. Hence, the results validate that our construction could serve as an efficient platform to produce a recombinant cetuximab-Fab with a retained antigen-binding functionality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-016-7717-z | DOI Listing |
J Transl Med
January 2025
Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230031, Anhui, China.
Background: Agonistic monoclonal antibodies targeting 4-1BB/CD137 have shown preclinical promise, but their clinical development has been limited by severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy.
Methods: A novel anti-MSLN×4-1BB bispecific antibody (bsAb) was generated via antibody engineering, and its affinity and activity were detected via enzyme-linked immunosorbent assay (ELISA), flow cytometry, and T-cell activation and luciferase reporter assays.
Matrix Biol
February 2025
Department of Life Sciences, Ewha Womans University, Seoul 03760, South Korea. Electronic address:
Disrupting the interaction between matrix metalloproteinase-7 (MMP-7) and syndecan-2 (SDC-2) can yield anticancer effects in colon cancer cells. Here, a single-chain variable fragment (scFv) targeting the pro-domain of MMP-7 was generated as a potential candidate anticancer agent. Among the generated scFvs, those designated 1B7 and 1C3 showed the strongest abilities to inhibit the ability of MMP-7 pro-domain to directly interact with SDC-2 in vitro and decrease the cancer activities of human HT29 colon adenocarcinoma cells.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Neurology, Davis School of Medicine, University of California, 1515 Newton Court, Davis, CA 95618, USA.
We have designed and produced 39 amino acid peptide mimics of the and human acetylcholine receptors' (AChRs) main immunogenic regions (MIRs). These conformationally sensitive regions consist of three non-contiguous segments of the AChR α-subunits and are the target of 50-70% of the anti-AChR autoantibodies (Abs) in human myasthenic serum and in the serum of rats with a model of that disease, experimental autoimmune myasthenia gravis (EAMG), induced by immunizing the rats with the electric organ AChR. These MIR segments covalently joined together bind a significant fraction of the monoclonal antibodies (mAbs) raised in rats against electric organ AChR.
View Article and Find Full Text PDFJ Immunother Cancer
December 2024
Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
Objective: Targeting CD47 for cancer immunotherapy has been studied in many clinical trials for the treatment of patients with advanced tumors. However, this therapeutic approach is often hampered by on-target side effects, physical barriers, and immunosuppressive tumor microenvironment (TME).
Methods: To improve therapeutic efficacy while minimizing toxicities, we engineered an oncolytic vaccinia virus (OVV) encoding an anti-CD47 nanobody (OVV-αCD47nb).
Nat Commun
January 2025
Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
Influenza remains a persistent global health challenge, largely due to the virus' continuous antigenic drift and occasional shift, which impede the development of a universal vaccine. To address this, the identification of broadly neutralizing antibodies and their epitopes is crucial. Nanobodies, with their unique characteristics and binding capacity, offer a promising avenue to identify such epitopes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!