The Coffea genus, 124 described species, has a natural distribution spreading from inter-tropical Africa, to Western Indian Ocean Islands, India, Asia and up to Australasia. Two cultivated species, C. arabica and C. canephora, are intensively studied while, the breeding potential and the genome composition of all the wild species remained poorly uncharacterized. Here, we report the characterization and comparison of the highly repeated transposable elements content of 11 Coffea species representatives of the natural biogeographic distribution. A total of 994 Mb from 454 reads were produced with a genome coverage ranging between 3.2 and 15.7 %. The analyses showed that highly repeated transposable elements, mainly LTR retrotransposons (LTR-RT), represent between 32 and 53 % of Coffea genomes depending on their biogeographic location and genome size. Species from West and Central Africa (Eucoffea) contained the highest LTR-RT content but with no strong variation relative to their genome size. At the opposite, for the insular species (Mascarocoffea), a strong variation of LTR-RT was observed suggesting differential dynamics of these elements in this group. Two LTR-RT lineages, SIRE and Del were clearly differentially accumulated between African and insular species, suggesting these lineages were associated to the genome divergence of Coffea species in Africa. Altogether, the information obtained in this study improves our knowledge and brings new data on the composition, the evolution and the divergence of wild Coffea genomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00438-016-1235-7 | DOI Listing |
Int J Mol Sci
December 2024
School of Agriculture, Yunnan University, Kunming 650500, China.
() genes play significant roles in plant development and stress responses. Difficulties in somatic embryogenesis are a significant constraint on the uniform seedling production and genetic modification of , hindering efforts to improve coffee production in Yunnan, China. This study comprehensively analyzed genes in three species.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Yunnan Key Laboratory of Southern Medicinal Resources, Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong 666100, China; Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China. Electronic address:
Plants have evolved a diverse array of secondary metabolites to enhance their adaptability to environmental stresses, with volatile terpenoids being a notable example. Gardenia (Gardenia jasminoides), celebrated for its unique fragrance, is a key natural source of volatile terpenoids. Using our chromosome-level genome and transcriptome data of G.
View Article and Find Full Text PDFPLoS Biol
December 2024
Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa.
Two outbreaks of coffee wilt disease have devastated African coffee production. A PLOS Biology study suggests that horizontal gene transfer via large Starship transposons between 2 fungal species played a key role in the repeated emergence of the disease.
View Article and Find Full Text PDFPLoS Biol
December 2024
Department of Life Sciences, Silwood Park Campus, Imperial College London, Berkshire, United Kingdom.
Outbreaks of fungal diseases have devastated plants and animals throughout history. Over the past century, the repeated emergence of coffee wilt disease caused by the fungal pathogen Fusarium xylarioides severely impacted coffee production across sub-Saharan Africa. To improve the disease management of such pathogens, it is crucial to understand their genetic structure and evolutionary potential.
View Article and Find Full Text PDFJ Food Sci
December 2024
Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!