Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sudden cardiac death (SCD) represents a significant portion of all cardiac deaths. Current guidelines focus mainly on left ventricular ejection fraction (LVEF) as the main criterion for SCD risk stratification and management. However, LVEF alone lacks both sensitivity and specificity in stratifying patients. Recent research has provided interesting data which supports a greater role for advanced cardiac imaging in risk stratification and patient management. In this article, we will focus on nuclear cardiac imaging, including left ventricular function assessment, myocardial perfusion imaging, myocardial blood flow quantification, metabolic imaging, and neurohormonal imaging. We will discuss how these can be used to better understand SCD and better stratify patient with both ischemic and non-ischemic cardiomyopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12350-016-0599-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!