Initial results of selective renal parenchymal clamping with an adjustable kidney clamp in nephron-sparing surgery: an easy way to minimise renal ischaemia.

Hong Kong Med J

Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong.

Published: December 2016

Introduction: A renal parenchymal clamp has been used at our centre since March 2012. It is used in position over the kidney to achieve optimal vascular control of a tumour while minimising parenchymal ischaemia. This study aimed to report the feasibility, surgical outcome, and oncological control of a kidney clamp in partial nephrectomy.

Methods: This study was conducted at a teaching hospital in Hong Kong. Partial nephrectomies performed from January 2009 to March 2015 were reviewed. The tumour characteristics and surgical outcomes of kidney clamp were studied and compared with traditional hilar clamping.

Results: A total of 92 patients were identified during the study period. Kidney clamps were used in 20 patients and hilar clamping in 72, with a mean follow-up of 27 and 37 months, respectively. For patients in whom a kidney clamp was applied, all tumours were exophytic to a different extent and the majority (90%) were located at the polar region. The PADUA (preoperative aspects and dimensions used for an anatomical) classification nephrometry score was also lower than those in whom hilar clamping was used (7.07 vs 8.34; P=0.002). The clamp was used in open, laparoscopic, and robot-assisted surgery. Operating time was shorter (207 ± 72 mins vs 306 ± 80 mins; P<0.001) and estimated blood loss was lower (205 ± 191 mL vs 331 ± 275 mL; P=0.045) with kidney clamp. No acute kidney injury occurred. Postoperative renal function was comparable between the two groups.

Conclusions: Partial nephrectomy using parenchymal clamping is safe and feasible in selected cases. The postoperative renal function and oncological control were satisfactory.

Download full-text PDF

Source
http://dx.doi.org/10.12809/hkmj154746DOI Listing

Publication Analysis

Top Keywords

kidney clamp
16
renal parenchymal
8
hilar clamping
8
kidney
6
clamp
6
initial selective
4
selective renal
4
parenchymal clamping
4
clamping adjustable
4
adjustable kidney
4

Similar Publications

Background: Chronic kidney disease (CKD) is a leading cause of death in the United States, and renal fibrosis represents a pathologic hallmark of CKD. Extracellular cold-inducible RNA-binding protein (eCIRP) is a stress response protein involved in acute inflammation, tissue injury and regulated cell death. However, the role of eCIRP in chronic inflammation and tissue injury has not been elucidated.

View Article and Find Full Text PDF

The role played by anionic channels in diabetic kidney disease (DKD) is not known. Chloride channel accessory 1 (CLCA1) facilitates the activity of TMEM16A (Anoctamin-1), a Ca2+-dependent Cl- channel. We examined if CLCA1/TMEM16A had a role in DKD.

View Article and Find Full Text PDF

Macrophages play a vital role in the inflammation and repair processes of ischemia/reperfusion-induced acute kidney injury (IR-AKI). The mechanosensitive ion channel Piezo1 is significant in these inflammatory processes. However, the exact role of macrophage in IR-AKI is unknown.

View Article and Find Full Text PDF

Neuropathic pain is a type of pain caused by an injury or disease of the somatosensory nervous system. Currently, there is still absence of effective therapeutic drugs for neuropathic pain, so developing new therapeutic drugs is urgently needed. In the present study, we observed the effect of Comp 6d, a novel silent information regulator 1 (SIRT1) activator synthesized in our laboratory, on neuropathic pain and investigated the mechanisms involved.

View Article and Find Full Text PDF

PM Exposure Induces Glomerular Hyperfiltration in Mice in a Gender-Dependent Manner.

Toxics

December 2024

Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China.

As one of the most common air pollutants, fine particulate matter (PM) increases the risk of diseases in various systems, including the urinary system. In the present study, we exposed male and female C57BL/6J mice to PM for 8 weeks. Examination of renal function indices, including creatinine (CRE), blood urea nitrogen (BUN), uric acid (UA), and urinary microalbumin, indicated that the kidneys of female mice, not male mice, underwent early renal injury, exhibiting glomerular hyperfiltration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!