Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rotavirus infection has emerged as an important cause of complications in organ transplantation recipients. Immunosuppressants used to prevent alloreactivity can also interfere with virus infection, but the direct effects of the specific type of immunosuppressants on rotavirus infection are still unclear. Here we profiled the effects of different immunosuppressants on rotavirus using a 2D culture model of Caco2 human intestinal cell line and a 3D model of human primary intestinal organoids inoculated with laboratory and patient-derived rotavirus strains. We found that the responsiveness of rotavirus to Cyclosporine A treatment was moderate and strictly regulated in an opposite direction by its cellular targets cyclophilin A and B. Treatment with mycophenolic acid (MPA) resulted in a 99% inhibition of viral RNA production at the clinically relevant concentration (10 μg/ml) in Caco2 cells. This effect was further confirmed in organoids. Importantly, continuous treatment with MPA for 30 passages did not attenuate its antiviral potency, indicating a high barrier to drug resistance development. Mechanistically, the antiviral effects of MPA act via inhibiting the IMPDH enzyme and resulting in guanosine nucleotide depletion. Thus for transplantation patients at risk for rotavirus infection, the choice of MPA as an immunosuppressive agent appears rational.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.antiviral.2016.07.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!