Patients with type 1 diabetes have lower bone mineral density and higher risk of fractures. The role of osteoblasts in diabetes-related osteoporosis is well acknowledged whereas the role of osteoclasts (OCLs) is still unclear. We hypothesize that OCLs participate in pathological bone remodeling. We conducted studies in animals (streptozotocin-induced type 1 diabetic mice) and cellular models to investigate canonical and non-canonical mechanisms underlying excessive OCL activation. Diabetic mice show an increased number of active OCLs. In vitro studies demonstrate the involvement of acidosis in OCL activation and the implication of transient receptor potential cation channel subfamily V member 1 (TRPV1). In vivo studies confirm the establishment of local acidosis in the diabetic bone marrow (BM) as well as the ineffectiveness of insulin in correcting the pH variation and osteoclast activation. Conversely, treatment with TRPV1 receptor antagonists re-establishes a physiological OCL availability. These data suggest that diabetes causes local acidosis in the BM that in turn increases osteoclast activation through the modulation of TRPV1. The use of clinically available TRPV1 antagonists may provide a new means to combat bone problems associated with diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965751PMC
http://dx.doi.org/10.1038/srep30639DOI Listing

Publication Analysis

Top Keywords

transient receptor
8
receptor potential
8
potential cation
8
diabetic mice
8
ocl activation
8
local acidosis
8
osteoclast activation
8
activation
5
diabetes
4
diabetes stimulates
4

Similar Publications

Thyroid hormones (TH) play a key role in fetal brain development. While severe thyroid dysfunction, has been shown to cause neurodevelopmental and reproductive disorders, the rising levels of TH-disruptors in the environment in the past few decades have increased the need to assess effects of subclinical (mild) TH insufficiency during gestation. Since embryos do not produce their own TH before mid-gestation, early development processes rely on maternal production.

View Article and Find Full Text PDF

Brg1 and RUNX1 synergy in regulating TRPM4 channel in mouse cardiomyocytes.

Front Pharmacol

December 2024

Harbin Medical University and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin, China.

Background: Transient Receptor Potential Melastatin 4 (TRPM4), a non-selective cation channel, plays a critical role in cardiac conduction abnormalities. Brg1, an ATP-dependent chromatin remodeler, is essential for regulating gene expression in both heart development and disease. Our previous studies demonstrated Brg1 impacted on cardiac sodium/potassium channels and electrophysiological stability, its influence on TRPM4 expression and function remained unexplored.

View Article and Find Full Text PDF

Functional Regrowth of Norepinephrine Axons in the Adult Mouse Brain Following Injury.

eNeuro

December 2024

Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.

It is widely believed that axons in the central nervous system of adult mammals do not regrow following injury. This failure is thought, at least in part, to underlie the limited recovery of function following injury to the brain or spinal cord. Some studies of fixed tissue have suggested that, counter to dogma, norepinephrine (NE) axons regrow following brain injury.

View Article and Find Full Text PDF
Article Synopsis
  • Bladder cancer is more common in men and has high recurrence rates, particularly for non-muscle-invasive forms.
  • Transient receptor potential canonical channels (TRPCs), especially TRPC3, influence cancer cell behavior through calcium signaling, and the study investigates the effects of the TRPC3 inhibitor Pyr3 on bladder cancer cells.
  • Pyr3 treatment led to reduced cell viability, migration, and specific protein levels associated with cancer progression, indicating its potential as a therapeutic agent for bladder cancer by targeting PKC signaling.
View Article and Find Full Text PDF

It is not clear how CD4 memory T cells are formed from a much larger pool of earlier effector cells. We found that transient systemic bacterial infection rapidly generates several antigen-specific T helper (Th)1 and T follicular helper (Tfh) cell populations with different tissue residence behaviors. Although most cells of all varieties had transcriptomes indicative of cell stress and death at the peak of the response, some had already acquired a memory cell signature characterized by expression of genes involved in cell survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!