Light-driven water splitting is one of the most promising approaches for using solar energy in light of more sustainable development. In this paper, a highly efficient p-type copper(II) oxide photocathode is studied. The material, prepared by thermal treatment of CuI nanoparticles, is initially partially reduced upon working conditions and soon reaches a stable form. Upon visible-light illumination, the material yields a photocurrent of 1.3 mA cm(-2) at a potential of 0.2 V vs a reversible hydrogen electrode at mild pH under illumination by AM 1.5 G and retains 30% of its photoactivity after 6 h. This represents an unprecedented result for a nonprotected Cu oxide photocathode at neutral pH. The photocurrent efficiency as a function of the applied potential was determined using scanning electrochemical microscopy. The material was characterized in terms of photoelectrochemical features; X-ray photoelectron spectroscopy, X-ray absorption near-edge structure, fixed-energy X-ray absorption voltammetry, and extended X-ray absorption fine structure analyses were carried out on pristine and used samples, which were used to explain the photoelectrochemical behavior. The optical features of the oxide are evidenced by direct reflectance spectroscopy and fluorescence spectroscopy, and Mott-Schottky analysis at different pH values explains the exceptional activity at neutral pH.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b03345DOI Listing

Publication Analysis

Top Keywords

x-ray absorption
12
oxide photocathode
8
efficient cuxo
4
cuxo photocathode
4
photocathode hydrogen
4
hydrogen production
4
production neutral
4
neutral insights
4
insights combined
4
spectroscopy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!