It has recently become clear that many invasive species have evolved in situ via hybridization or polyploidy from progenitors which themselves are introduced species. For species formed by hybridization or polyploidy, genetic diversity within the newly formed species is influenced by the number of independent evolutionary origins of the species. For recently formed species, an analysis of genetic structure can provide insight into the number of independent origin events involved in the formation of the species. For a putative invasive allopolyploid species, the number of origins involved in the species formation, the genetic diversity present within these origins, and the level of gene flow between independent origins determines the genetic composition of the neospecies. Here we analyze the genetic structure of the newly formed allopolyploid species, Salsola ryanii, a tumbleweed which evolved within the last 20-100 years in California. We utilize the genetic structure analysis to determine that this new species is the result of at least three independent allopolyplodization events followed by gene flow between the descendants of independent origins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4947149PMC
http://dx.doi.org/10.1111/eva.12399DOI Listing

Publication Analysis

Top Keywords

genetic structure
16
independent origins
12
species
11
salsola ryanii
8
hybridization polyploidy
8
species formed
8
genetic diversity
8
newly formed
8
formed species
8
number independent
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!